Description: The primes are unbounded. This generalizes prmunb to real A with arch and lttrd : every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | prmunb2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll | |
|
2 | nnre | |
|
3 | 2 | ad3antlr | |
4 | prmz | |
|
5 | 4 | zred | |
6 | 5 | ad2antlr | |
7 | simprl | |
|
8 | simprr | |
|
9 | 1 3 6 7 8 | lttrd | |
10 | arch | |
|
11 | prmunb | |
|
12 | 11 | rgen | |
13 | r19.29r | |
|
14 | 10 12 13 | sylancl | |
15 | r19.42v | |
|
16 | 15 | rexbii | |
17 | 14 16 | sylibr | |
18 | 9 17 | reximddv2 | |
19 | 1nn | |
|
20 | ne0i | |
|
21 | r19.9rzv | |
|
22 | 19 20 21 | mp2b | |
23 | 18 22 | sylibr | |