Metamath Proof Explorer


Theorem prmunb2

Description: The primes are unbounded. This generalizes prmunb to real A with arch and lttrd : every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion prmunb2 ApA<p

Proof

Step Hyp Ref Expression
1 simplll AnpA<nn<pA
2 nnre nn
3 2 ad3antlr AnpA<nn<pn
4 prmz pp
5 4 zred pp
6 5 ad2antlr AnpA<nn<pp
7 simprl AnpA<nn<pA<n
8 simprr AnpA<nn<pn<p
9 1 3 6 7 8 lttrd AnpA<nn<pA<p
10 arch AnA<n
11 prmunb npn<p
12 11 rgen npn<p
13 r19.29r nA<nnpn<pnA<npn<p
14 10 12 13 sylancl AnA<npn<p
15 r19.42v pA<nn<pA<npn<p
16 15 rexbii npA<nn<pnA<npn<p
17 14 16 sylibr AnpA<nn<p
18 9 17 reximddv2 AnpA<p
19 1nn 1
20 ne0i 1
21 r19.9rzv pA<pnpA<p
22 19 20 21 mp2b pA<pnpA<p
23 18 22 sylibr ApA<p