Metamath Proof Explorer


Theorem prmunb

Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012)

Ref Expression
Assertion prmunb NpN<p

Proof

Step Hyp Ref Expression
1 nnnn0 NN0
2 faccl N0N!
3 elnnuz N!N!1
4 eluzp1p1 N!1N!+11+1
5 df-2 2=1+1
6 5 fveq2i 2=1+1
7 4 6 eleqtrrdi N!1N!+12
8 3 7 sylbi N!N!+12
9 exprmfct N!+12ppN!+1
10 2 8 9 3syl N0ppN!+1
11 prmz pp
12 nn0z N0N
13 eluz pNNppN
14 11 12 13 syl2an pN0NppN
15 prmuz2 pp2
16 eluz2b2 p2p1<p
17 15 16 sylib pp1<p
18 17 adantr pNpp1<p
19 18 simpld pNpp
20 19 nnnn0d pNpp0
21 eluznn0 p0NpN0
22 20 21 sylancom pNpN0
23 nnz N!N!
24 22 2 23 3syl pNpN!
25 18 simprd pNp1<p
26 dvdsfac pNppN!
27 19 26 sylancom pNppN!
28 ndvdsp1 N!p1<ppN!¬pN!+1
29 28 imp N!p1<ppN!¬pN!+1
30 24 19 25 27 29 syl31anc pNp¬pN!+1
31 30 ex pNp¬pN!+1
32 31 adantr pN0Np¬pN!+1
33 14 32 sylbird pN0pN¬pN!+1
34 33 con2d pN0pN!+1¬pN
35 34 ancoms N0ppN!+1¬pN
36 nn0re N0N
37 11 zred pp
38 ltnle NpN<p¬pN
39 36 37 38 syl2an N0pN<p¬pN
40 35 39 sylibrd N0ppN!+1N<p
41 40 reximdva N0ppN!+1pN<p
42 10 41 mpd N0pN<p
43 1 42 syl NpN<p