Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | prmunb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 | |
|
2 | faccl | |
|
3 | elnnuz | |
|
4 | eluzp1p1 | |
|
5 | df-2 | |
|
6 | 5 | fveq2i | |
7 | 4 6 | eleqtrrdi | |
8 | 3 7 | sylbi | |
9 | exprmfct | |
|
10 | 2 8 9 | 3syl | |
11 | prmz | |
|
12 | nn0z | |
|
13 | eluz | |
|
14 | 11 12 13 | syl2an | |
15 | prmuz2 | |
|
16 | eluz2b2 | |
|
17 | 15 16 | sylib | |
18 | 17 | adantr | |
19 | 18 | simpld | |
20 | 19 | nnnn0d | |
21 | eluznn0 | |
|
22 | 20 21 | sylancom | |
23 | nnz | |
|
24 | 22 2 23 | 3syl | |
25 | 18 | simprd | |
26 | dvdsfac | |
|
27 | 19 26 | sylancom | |
28 | ndvdsp1 | |
|
29 | 28 | imp | |
30 | 24 19 25 27 29 | syl31anc | |
31 | 30 | ex | |
32 | 31 | adantr | |
33 | 14 32 | sylbird | |
34 | 33 | con2d | |
35 | 34 | ancoms | |
36 | nn0re | |
|
37 | 11 | zred | |
38 | ltnle | |
|
39 | 36 37 38 | syl2an | |
40 | 35 39 | sylibrd | |
41 | 40 | reximdva | |
42 | 10 41 | mpd | |
43 | 1 42 | syl | |