Metamath Proof Explorer


Theorem prmunb

Description: The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012)

Ref Expression
Assertion prmunb N p N < p

Proof

Step Hyp Ref Expression
1 nnnn0 N N 0
2 faccl N 0 N !
3 elnnuz N ! N ! 1
4 eluzp1p1 N ! 1 N ! + 1 1 + 1
5 df-2 2 = 1 + 1
6 5 fveq2i 2 = 1 + 1
7 4 6 eleqtrrdi N ! 1 N ! + 1 2
8 3 7 sylbi N ! N ! + 1 2
9 exprmfct N ! + 1 2 p p N ! + 1
10 2 8 9 3syl N 0 p p N ! + 1
11 prmz p p
12 nn0z N 0 N
13 eluz p N N p p N
14 11 12 13 syl2an p N 0 N p p N
15 prmuz2 p p 2
16 eluz2b2 p 2 p 1 < p
17 15 16 sylib p p 1 < p
18 17 adantr p N p p 1 < p
19 18 simpld p N p p
20 19 nnnn0d p N p p 0
21 eluznn0 p 0 N p N 0
22 20 21 sylancom p N p N 0
23 nnz N ! N !
24 22 2 23 3syl p N p N !
25 18 simprd p N p 1 < p
26 dvdsfac p N p p N !
27 19 26 sylancom p N p p N !
28 ndvdsp1 N ! p 1 < p p N ! ¬ p N ! + 1
29 28 imp N ! p 1 < p p N ! ¬ p N ! + 1
30 24 19 25 27 29 syl31anc p N p ¬ p N ! + 1
31 30 ex p N p ¬ p N ! + 1
32 31 adantr p N 0 N p ¬ p N ! + 1
33 14 32 sylbird p N 0 p N ¬ p N ! + 1
34 33 con2d p N 0 p N ! + 1 ¬ p N
35 34 ancoms N 0 p p N ! + 1 ¬ p N
36 nn0re N 0 N
37 11 zred p p
38 ltnle N p N < p ¬ p N
39 36 37 38 syl2an N 0 p N < p ¬ p N
40 35 39 sylibrd N 0 p p N ! + 1 N < p
41 40 reximdva N 0 p p N ! + 1 p N < p
42 10 41 mpd N 0 p N < p
43 1 42 syl N p N < p