Metamath Proof Explorer


Theorem sblpnf

Description: The infinity ball in the absolute value metric is just the whole space. S analogue of blpnf . (Contributed by Steve Rodriguez, 8-Nov-2015)

Ref Expression
Hypotheses sblpnf.s φ S
sblpnf.d D = abs S × S
Assertion sblpnf φ P S P ball D +∞ = S

Proof

Step Hyp Ref Expression
1 sblpnf.s φ S
2 sblpnf.d D = abs S × S
3 elpri S S = S =
4 eqid abs 2 = abs 2
5 4 remet abs 2 Met
6 xpeq12 S = S = S × S = 2
7 6 anidms S = S × S = 2
8 7 reseq2d S = abs S × S = abs 2
9 fveq2 S = Met S = Met
10 8 9 eleq12d S = abs S × S Met S abs 2 Met
11 5 10 mpbiri S = abs S × S Met S
12 2 11 eqeltrid S = D Met S
13 relco Rel abs
14 resdm Rel abs abs dom abs = abs
15 13 14 ax-mp abs dom abs = abs
16 absf abs :
17 ax-resscn
18 fss abs : abs :
19 16 17 18 mp2an abs :
20 subf : ×
21 fco abs : : × abs : ×
22 19 20 21 mp2an abs : ×
23 22 fdmi dom abs = ×
24 23 reseq2i abs dom abs = abs ×
25 15 24 eqtr3i abs = abs ×
26 cnmet abs Met
27 25 26 eqeltrri abs × Met
28 xpeq12 S = S = S × S = ×
29 28 anidms S = S × S = ×
30 29 reseq2d S = abs S × S = abs ×
31 fveq2 S = Met S = Met
32 30 31 eleq12d S = abs S × S Met S abs × Met
33 27 32 mpbiri S = abs S × S Met S
34 2 33 eqeltrid S = D Met S
35 12 34 jaoi S = S = D Met S
36 1 3 35 3syl φ D Met S
37 blpnf D Met S P S P ball D +∞ = S
38 36 37 sylan φ P S P ball D +∞ = S