Metamath Proof Explorer


Theorem sblpnf

Description: The infinity ball in the absolute value metric is just the whole space. S analogue of blpnf . (Contributed by Steve Rodriguez, 8-Nov-2015)

Ref Expression
Hypotheses sblpnf.s φS
sblpnf.d D=absS×S
Assertion sblpnf φPSPballD+∞=S

Proof

Step Hyp Ref Expression
1 sblpnf.s φS
2 sblpnf.d D=absS×S
3 elpri SS=S=
4 eqid abs2=abs2
5 4 remet abs2Met
6 xpeq12 S=S=S×S=2
7 6 anidms S=S×S=2
8 7 reseq2d S=absS×S=abs2
9 fveq2 S=MetS=Met
10 8 9 eleq12d S=absS×SMetSabs2Met
11 5 10 mpbiri S=absS×SMetS
12 2 11 eqeltrid S=DMetS
13 relco Relabs
14 resdm Relabsabsdomabs=abs
15 13 14 ax-mp absdomabs=abs
16 absf abs:
17 ax-resscn
18 fss abs:abs:
19 16 17 18 mp2an abs:
20 subf :×
21 fco abs::×abs:×
22 19 20 21 mp2an abs:×
23 22 fdmi domabs=×
24 23 reseq2i absdomabs=abs×
25 15 24 eqtr3i abs=abs×
26 cnmet absMet
27 25 26 eqeltrri abs×Met
28 xpeq12 S=S=S×S=×
29 28 anidms S=S×S=×
30 29 reseq2d S=absS×S=abs×
31 fveq2 S=MetS=Met
32 30 31 eleq12d S=absS×SMetSabs×Met
33 27 32 mpbiri S=absS×SMetS
34 2 33 eqeltrid S=DMetS
35 12 34 jaoi S=S=DMetS
36 1 3 35 3syl φDMetS
37 blpnf DMetSPSPballD+∞=S
38 36 37 sylan φPSPballD+∞=S