| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sblpnf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
sblpnf.d |
⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) |
| 3 |
|
elpri |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) ) |
| 4 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 5 |
4
|
remet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) |
| 6 |
|
xpeq12 |
⊢ ( ( 𝑆 = ℝ ∧ 𝑆 = ℝ ) → ( 𝑆 × 𝑆 ) = ( ℝ × ℝ ) ) |
| 7 |
6
|
anidms |
⊢ ( 𝑆 = ℝ → ( 𝑆 × 𝑆 ) = ( ℝ × ℝ ) ) |
| 8 |
7
|
reseq2d |
⊢ ( 𝑆 = ℝ → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑆 = ℝ → ( Met ‘ 𝑆 ) = ( Met ‘ ℝ ) ) |
| 10 |
8 9
|
eleq12d |
⊢ ( 𝑆 = ℝ → ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Met ‘ 𝑆 ) ↔ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) ) ) |
| 11 |
5 10
|
mpbiri |
⊢ ( 𝑆 = ℝ → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Met ‘ 𝑆 ) ) |
| 12 |
2 11
|
eqeltrid |
⊢ ( 𝑆 = ℝ → 𝐷 ∈ ( Met ‘ 𝑆 ) ) |
| 13 |
|
relco |
⊢ Rel ( abs ∘ − ) |
| 14 |
|
resdm |
⊢ ( Rel ( abs ∘ − ) → ( ( abs ∘ − ) ↾ dom ( abs ∘ − ) ) = ( abs ∘ − ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ( abs ∘ − ) ↾ dom ( abs ∘ − ) ) = ( abs ∘ − ) |
| 16 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
| 17 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 18 |
|
fss |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → abs : ℂ ⟶ ℂ ) |
| 19 |
16 17 18
|
mp2an |
⊢ abs : ℂ ⟶ ℂ |
| 20 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
| 21 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℂ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℂ ) |
| 22 |
19 20 21
|
mp2an |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℂ |
| 23 |
22
|
fdmi |
⊢ dom ( abs ∘ − ) = ( ℂ × ℂ ) |
| 24 |
23
|
reseq2i |
⊢ ( ( abs ∘ − ) ↾ dom ( abs ∘ − ) ) = ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) |
| 25 |
15 24
|
eqtr3i |
⊢ ( abs ∘ − ) = ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) |
| 26 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
| 27 |
25 26
|
eqeltrri |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) ∈ ( Met ‘ ℂ ) |
| 28 |
|
xpeq12 |
⊢ ( ( 𝑆 = ℂ ∧ 𝑆 = ℂ ) → ( 𝑆 × 𝑆 ) = ( ℂ × ℂ ) ) |
| 29 |
28
|
anidms |
⊢ ( 𝑆 = ℂ → ( 𝑆 × 𝑆 ) = ( ℂ × ℂ ) ) |
| 30 |
29
|
reseq2d |
⊢ ( 𝑆 = ℂ → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) = ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑆 = ℂ → ( Met ‘ 𝑆 ) = ( Met ‘ ℂ ) ) |
| 32 |
30 31
|
eleq12d |
⊢ ( 𝑆 = ℂ → ( ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Met ‘ 𝑆 ) ↔ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) ∈ ( Met ‘ ℂ ) ) ) |
| 33 |
27 32
|
mpbiri |
⊢ ( 𝑆 = ℂ → ( ( abs ∘ − ) ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Met ‘ 𝑆 ) ) |
| 34 |
2 33
|
eqeltrid |
⊢ ( 𝑆 = ℂ → 𝐷 ∈ ( Met ‘ 𝑆 ) ) |
| 35 |
12 34
|
jaoi |
⊢ ( ( 𝑆 = ℝ ∨ 𝑆 = ℂ ) → 𝐷 ∈ ( Met ‘ 𝑆 ) ) |
| 36 |
1 3 35
|
3syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑆 ) ) |
| 37 |
|
blpnf |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑆 ) ∧ 𝑃 ∈ 𝑆 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = 𝑆 ) |
| 38 |
36 37
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑃 ∈ 𝑆 ) → ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) = 𝑆 ) |