Metamath Proof Explorer


Theorem iso0

Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)

Ref Expression
Assertion iso0 ∅ Isom 𝑅 , 𝑆 ( ∅ , ∅ )

Proof

Step Hyp Ref Expression
1 f1o0 ∅ : ∅ –1-1-onto→ ∅
2 ral0 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ↔ ( ∅ ‘ 𝑥 ) 𝑆 ( ∅ ‘ 𝑦 ) )
3 df-isom ( ∅ Isom 𝑅 , 𝑆 ( ∅ , ∅ ) ↔ ( ∅ : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ↔ ( ∅ ‘ 𝑥 ) 𝑆 ( ∅ ‘ 𝑦 ) ) ) )
4 1 2 3 mpbir2an ∅ Isom 𝑅 , 𝑆 ( ∅ , ∅ )