Description: The empty set is an R , S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iso0 | ⊢ ∅ Isom 𝑅 , 𝑆 ( ∅ , ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
2 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ↔ ( ∅ ‘ 𝑥 ) 𝑆 ( ∅ ‘ 𝑦 ) ) | |
3 | df-isom | ⊢ ( ∅ Isom 𝑅 , 𝑆 ( ∅ , ∅ ) ↔ ( ∅ : ∅ –1-1-onto→ ∅ ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑅 𝑦 ↔ ( ∅ ‘ 𝑥 ) 𝑆 ( ∅ ‘ 𝑦 ) ) ) ) | |
4 | 1 2 3 | mpbir2an | ⊢ ∅ Isom 𝑅 , 𝑆 ( ∅ , ∅ ) |