| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprm2 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 2 |
|
eluz2b3 |
|- ( z e. ( ZZ>= ` 2 ) <-> ( z e. NN /\ z =/= 1 ) ) |
| 3 |
2
|
imbi1i |
|- ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) <-> ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) ) |
| 4 |
|
impexp |
|- ( ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z =/= 1 -> ( z || P -> z = P ) ) ) ) |
| 5 |
|
bi2.04 |
|- ( ( z =/= 1 -> ( z || P -> z = P ) ) <-> ( z || P -> ( z =/= 1 -> z = P ) ) ) |
| 6 |
|
df-ne |
|- ( z =/= 1 <-> -. z = 1 ) |
| 7 |
6
|
imbi1i |
|- ( ( z =/= 1 -> z = P ) <-> ( -. z = 1 -> z = P ) ) |
| 8 |
|
df-or |
|- ( ( z = 1 \/ z = P ) <-> ( -. z = 1 -> z = P ) ) |
| 9 |
7 8
|
bitr4i |
|- ( ( z =/= 1 -> z = P ) <-> ( z = 1 \/ z = P ) ) |
| 10 |
9
|
imbi2i |
|- ( ( z || P -> ( z =/= 1 -> z = P ) ) <-> ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 11 |
5 10
|
bitri |
|- ( ( z =/= 1 -> ( z || P -> z = P ) ) <-> ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 12 |
11
|
imbi2i |
|- ( ( z e. NN -> ( z =/= 1 -> ( z || P -> z = P ) ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 13 |
4 12
|
bitri |
|- ( ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 14 |
3 13
|
bitri |
|- ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 15 |
14
|
ralbii2 |
|- ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) <-> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
| 16 |
15
|
anbi2i |
|- ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
| 17 |
1 16
|
bitr4i |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |