Metamath Proof Explorer


Theorem isrngoiso

Description: The predicate "is a ring isomorphism between R and S ". (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1
|- G = ( 1st ` R )
rngisoval.2
|- X = ran G
rngisoval.3
|- J = ( 1st ` S )
rngisoval.4
|- Y = ran J
Assertion isrngoiso
|- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) ) )

Proof

Step Hyp Ref Expression
1 rngisoval.1
 |-  G = ( 1st ` R )
2 rngisoval.2
 |-  X = ran G
3 rngisoval.3
 |-  J = ( 1st ` S )
4 rngisoval.4
 |-  Y = ran J
5 1 2 3 4 rngoisoval
 |-  ( ( R e. RingOps /\ S e. RingOps ) -> ( R RngIso S ) = { f e. ( R RngHom S ) | f : X -1-1-onto-> Y } )
6 5 eleq2d
 |-  ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> F e. { f e. ( R RngHom S ) | f : X -1-1-onto-> Y } ) )
7 f1oeq1
 |-  ( f = F -> ( f : X -1-1-onto-> Y <-> F : X -1-1-onto-> Y ) )
8 7 elrab
 |-  ( F e. { f e. ( R RngHom S ) | f : X -1-1-onto-> Y } <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) )
9 6 8 bitrdi
 |-  ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) ) )