Metamath Proof Explorer


Theorem isrngoiso

Description: The predicate "is a ring isomorphism between R and S ". (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses rngisoval.1 G=1stR
rngisoval.2 X=ranG
rngisoval.3 J=1stS
rngisoval.4 Y=ranJ
Assertion isrngoiso Could not format assertion : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 rngisoval.1 G=1stR
2 rngisoval.2 X=ranG
3 rngisoval.3 J=1stS
4 rngisoval.4 Y=ranJ
5 1 2 3 4 rngoisoval Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( R RingOpsIso S ) = { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( R RingOpsIso S ) = { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } ) with typecode |-
6 5 eleq2d Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> F e. { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> F e. { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } ) ) with typecode |-
7 f1oeq1 f=Ff:X1-1 ontoYF:X1-1 ontoY
8 7 elrab Could not format ( F e. { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) : No typesetting found for |- ( F e. { f e. ( R RingOpsHom S ) | f : X -1-1-onto-> Y } <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) with typecode |-
9 6 8 bitrdi Could not format ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) : No typesetting found for |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsIso S ) <-> ( F e. ( R RingOpsHom S ) /\ F : X -1-1-onto-> Y ) ) ) with typecode |-