Metamath Proof Explorer


Theorem issrgid

Description: Properties showing that an element I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidm.b
|- B = ( Base ` R )
srgidm.t
|- .x. = ( .r ` R )
srgidm.u
|- .1. = ( 1r ` R )
Assertion issrgid
|- ( R e. SRing -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) )

Proof

Step Hyp Ref Expression
1 srgidm.b
 |-  B = ( Base ` R )
2 srgidm.t
 |-  .x. = ( .r ` R )
3 srgidm.u
 |-  .1. = ( 1r ` R )
4 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
5 4 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 4 3 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
7 4 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
8 1 2 srgideu
 |-  ( R e. SRing -> E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) )
9 reurex
 |-  ( E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) )
10 8 9 syl
 |-  ( R e. SRing -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) )
11 5 6 7 10 ismgmid
 |-  ( R e. SRing -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) )