Metamath Proof Explorer


Theorem issrgid

Description: Properties showing that an element I is the unity element of a semiring. (Contributed by NM, 7-Aug-2013) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgidm.b B = Base R
srgidm.t · ˙ = R
srgidm.u 1 ˙ = 1 R
Assertion issrgid R SRing I B x B I · ˙ x = x x · ˙ I = x 1 ˙ = I

Proof

Step Hyp Ref Expression
1 srgidm.b B = Base R
2 srgidm.t · ˙ = R
3 srgidm.u 1 ˙ = 1 R
4 eqid mulGrp R = mulGrp R
5 4 1 mgpbas B = Base mulGrp R
6 4 3 ringidval 1 ˙ = 0 mulGrp R
7 4 2 mgpplusg · ˙ = + mulGrp R
8 1 2 srgideu R SRing ∃! y B x B y · ˙ x = x x · ˙ y = x
9 reurex ∃! y B x B y · ˙ x = x x · ˙ y = x y B x B y · ˙ x = x x · ˙ y = x
10 8 9 syl R SRing y B x B y · ˙ x = x x · ˙ y = x
11 5 6 7 10 ismgmid R SRing I B x B I · ˙ x = x x · ˙ I = x 1 ˙ = I