Metamath Proof Explorer


Theorem srgacl

Description: Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgacl.b B=BaseR
srgacl.p +˙=+R
Assertion srgacl RSRingXBYBX+˙YB

Proof

Step Hyp Ref Expression
1 srgacl.b B=BaseR
2 srgacl.p +˙=+R
3 srgmnd RSRingRMnd
4 1 2 mndcl RMndXBYBX+˙YB
5 3 4 syl3an1 RSRingXBYBX+˙YB