Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | istps.a | |- A = ( Base ` K ) |
|
istps.j | |- J = ( TopOpen ` K ) |
||
Assertion | istps2 | |- ( K e. TopSp <-> ( J e. Top /\ A = U. J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istps.a | |- A = ( Base ` K ) |
|
2 | istps.j | |- J = ( TopOpen ` K ) |
|
3 | 1 2 | istps | |- ( K e. TopSp <-> J e. ( TopOn ` A ) ) |
4 | istopon | |- ( J e. ( TopOn ` A ) <-> ( J e. Top /\ A = U. J ) ) |
|
5 | 3 4 | bitri | |- ( K e. TopSp <-> ( J e. Top /\ A = U. J ) ) |