Metamath Proof Explorer


Theorem istps2

Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istps.a
|- A = ( Base ` K )
istps.j
|- J = ( TopOpen ` K )
Assertion istps2
|- ( K e. TopSp <-> ( J e. Top /\ A = U. J ) )

Proof

Step Hyp Ref Expression
1 istps.a
 |-  A = ( Base ` K )
2 istps.j
 |-  J = ( TopOpen ` K )
3 1 2 istps
 |-  ( K e. TopSp <-> J e. ( TopOn ` A ) )
4 istopon
 |-  ( J e. ( TopOn ` A ) <-> ( J e. Top /\ A = U. J ) )
5 3 4 bitri
 |-  ( K e. TopSp <-> ( J e. Top /\ A = U. J ) )