Metamath Proof Explorer


Theorem istps2

Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istps.a A=BaseK
istps.j J=TopOpenK
Assertion istps2 KTopSpJTopA=J

Proof

Step Hyp Ref Expression
1 istps.a A=BaseK
2 istps.j J=TopOpenK
3 1 2 istps KTopSpJTopOnA
4 istopon JTopOnAJTopA=J
5 3 4 bitri KTopSpJTopA=J