| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itcoval |  |-  ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) | 
						
							| 2 | 1 | fveq1d |  |-  ( F e. V -> ( ( IterComp ` F ) ` 2 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) ) | 
						
							| 4 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 5 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 6 | 5 | a1i |  |-  ( ( Rel F /\ F e. V ) -> 1 e. NN0 ) | 
						
							| 7 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 8 | 1 | eqcomd |  |-  ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) | 
						
							| 9 | 8 | fveq1d |  |-  ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( IterComp ` F ) ` 1 ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( IterComp ` F ) ` 1 ) ) | 
						
							| 11 |  | itcoval1 |  |-  ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = F ) | 
						
							| 13 |  | eqidd |  |-  ( ( Rel F /\ F e. V ) -> ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) = ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) | 
						
							| 14 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 15 |  | neeq1 |  |-  ( i = 2 -> ( i =/= 0 <-> 2 =/= 0 ) ) | 
						
							| 16 | 14 15 | mpbiri |  |-  ( i = 2 -> i =/= 0 ) | 
						
							| 17 | 16 | neneqd |  |-  ( i = 2 -> -. i = 0 ) | 
						
							| 18 | 17 | iffalsed |  |-  ( i = 2 -> if ( i = 0 , ( _I |` dom F ) , F ) = F ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( Rel F /\ F e. V ) /\ i = 2 ) -> if ( i = 0 , ( _I |` dom F ) , F ) = F ) | 
						
							| 20 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 21 | 20 | a1i |  |-  ( ( Rel F /\ F e. V ) -> 2 e. NN0 ) | 
						
							| 22 |  | simpr |  |-  ( ( Rel F /\ F e. V ) -> F e. V ) | 
						
							| 23 | 13 19 21 22 | fvmptd |  |-  ( ( Rel F /\ F e. V ) -> ( ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ` 2 ) = F ) | 
						
							| 24 | 4 6 7 12 23 | seqp1d |  |-  ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) = ( F ( g e. _V , j e. _V |-> ( F o. g ) ) F ) ) | 
						
							| 25 |  | eqidd |  |-  ( F e. V -> ( g e. _V , j e. _V |-> ( F o. g ) ) = ( g e. _V , j e. _V |-> ( F o. g ) ) ) | 
						
							| 26 |  | coeq2 |  |-  ( g = F -> ( F o. g ) = ( F o. F ) ) | 
						
							| 27 | 26 | ad2antrl |  |-  ( ( F e. V /\ ( g = F /\ j = F ) ) -> ( F o. g ) = ( F o. F ) ) | 
						
							| 28 |  | elex |  |-  ( F e. V -> F e. _V ) | 
						
							| 29 |  | coexg |  |-  ( ( F e. V /\ F e. V ) -> ( F o. F ) e. _V ) | 
						
							| 30 | 29 | anidms |  |-  ( F e. V -> ( F o. F ) e. _V ) | 
						
							| 31 | 25 27 28 28 30 | ovmpod |  |-  ( F e. V -> ( F ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. F ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( Rel F /\ F e. V ) -> ( F ( g e. _V , j e. _V |-> ( F o. g ) ) F ) = ( F o. F ) ) | 
						
							| 33 | 3 24 32 | 3eqtrd |  |-  ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( F o. F ) ) |