Step |
Hyp |
Ref |
Expression |
1 |
|
itsclc0xyqsolr.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itsclc0xyqsolr.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
3 |
1 2
|
itsclc0xyqsol |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |
4 |
3
|
3expb |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |
5 |
|
simpl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
6 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A =/= 0 \/ B =/= 0 ) ) |
7 |
|
simpl |
|- ( ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R e. RR+ /\ 0 <_ D ) ) |
8 |
1 2
|
itsclc0xyqsolr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |
9 |
5 6 7 8
|
syl2an3an |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |
10 |
4 9
|
impbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |