Metamath Proof Explorer


Theorem itsclc0xyqsolb

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023) (Revised by AV, 14-May-2023)

Ref Expression
Hypotheses itsclc0xyqsolr.q
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
itsclc0xyqsolr.d
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )
Assertion itsclc0xyqsolb
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) )

Proof

Step Hyp Ref Expression
1 itsclc0xyqsolr.q
 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
2 itsclc0xyqsolr.d
 |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )
3 1 2 itsclc0xyqsol
 |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) )
4 3 3expb
 |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) )
5 simpl
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) )
6 simpr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A =/= 0 \/ B =/= 0 ) )
7 simpl
 |-  ( ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R e. RR+ /\ 0 <_ D ) )
8 1 2 itsclc0xyqsolr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) )
9 5 6 7 8 syl2an3an
 |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) )
10 4 9 impbid
 |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) )