Step |
Hyp |
Ref |
Expression |
1 |
|
itsclc0xyqsolr.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itsclc0xyqsolr.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
4 |
3
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
5 |
4
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. CC ) |
6 |
|
recn |
|- ( C e. RR -> C e. CC ) |
7 |
6
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
8 |
7
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. CC ) |
9 |
5 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
10 |
|
recn |
|- ( B e. RR -> B e. CC ) |
11 |
10
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
12 |
11
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. CC ) |
13 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
14 |
13
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) |
15 |
14
|
anim2i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) ) |
16 |
15
|
3adant2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) ) |
17 |
1 2
|
itsclc0lem3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR ) |
18 |
16 17
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. RR ) |
19 |
18
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. CC ) |
20 |
19
|
sqrtcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( sqrt ` D ) e. CC ) |
21 |
12 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( sqrt ` D ) ) e. CC ) |
22 |
9 21
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC ) |
23 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
24 |
23
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. RR ) |
25 |
24
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. CC ) |
26 |
25
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. CC ) |
27 |
|
simp11 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) |
28 |
|
simp12 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) |
29 |
|
simp2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A =/= 0 \/ B =/= 0 ) ) |
30 |
1
|
resum2sqorgt0 |
|- ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |
31 |
27 28 29 30
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 < Q ) |
32 |
31
|
gt0ne0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q =/= 0 ) |
33 |
22 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
34 |
4 7
|
mulcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. CC ) |
35 |
34
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
36 |
|
binom2 |
|- ( ( ( A x. C ) e. CC /\ ( B x. ( sqrt ` D ) ) e. CC ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
37 |
35 21 36
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
38 |
4 7
|
sqmuld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) ^ 2 ) = ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) |
39 |
38
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) ^ 2 ) = ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) |
40 |
39
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
41 |
12 20
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( sqrt ` D ) ) ^ 2 ) = ( ( B ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) ) |
42 |
|
simp3r |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 <_ D ) |
43 |
|
resqrtth |
|- ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
44 |
18 42 43
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
45 |
44
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) = ( ( B ^ 2 ) x. D ) ) |
46 |
41 45
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( sqrt ` D ) ) ^ 2 ) = ( ( B ^ 2 ) x. D ) ) |
47 |
40 46
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
48 |
37 47
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
49 |
48
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
50 |
33 49
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
51 |
12 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. C ) e. CC ) |
52 |
5 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
53 |
51 52
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC ) |
54 |
53 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
55 |
27
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. CC ) |
56 |
55 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
57 |
|
binom2sub |
|- ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
58 |
51 56 57
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
59 |
11 7
|
sqmuld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B x. C ) ^ 2 ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
60 |
59
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) ^ 2 ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
61 |
12 8 55 20
|
mul4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) = ( ( B x. A ) x. ( C x. ( sqrt ` D ) ) ) ) |
62 |
12 55
|
mulcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. A ) = ( A x. B ) ) |
63 |
62
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( C x. ( sqrt ` D ) ) ) = ( ( A x. B ) x. ( C x. ( sqrt ` D ) ) ) ) |
64 |
55 12 8 20
|
mul4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. B ) x. ( C x. ( sqrt ` D ) ) ) = ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) |
65 |
63 64
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( C x. ( sqrt ` D ) ) ) = ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) |
66 |
61 65
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) = ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) |
67 |
66
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) = ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) |
68 |
60 67
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
69 |
55 20
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( sqrt ` D ) ) ^ 2 ) = ( ( A ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) ) |
70 |
44
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) = ( ( A ^ 2 ) x. D ) ) |
71 |
69 70
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( sqrt ` D ) ) ^ 2 ) = ( ( A ^ 2 ) x. D ) ) |
72 |
68 71
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
73 |
58 72
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
74 |
73
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
75 |
54 74
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
76 |
50 75
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
77 |
5
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) e. CC ) |
78 |
8
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( C ^ 2 ) e. CC ) |
79 |
77 78
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
80 |
|
2cnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 2 e. CC ) |
81 |
9 21
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) e. CC ) |
82 |
80 81
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) e. CC ) |
83 |
79 82
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
84 |
12
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. CC ) |
85 |
84 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. D ) e. CC ) |
86 |
83 85
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) e. CC ) |
87 |
84 78
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
88 |
87 82
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
89 |
77 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. D ) e. CC ) |
90 |
88 89
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) e. CC ) |
91 |
26
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q ^ 2 ) e. CC ) |
92 |
|
2z |
|- 2 e. ZZ |
93 |
92
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 2 e. ZZ ) |
94 |
26 32 93
|
expne0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q ^ 2 ) =/= 0 ) |
95 |
86 90 91 94
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
96 |
83 85 88 89
|
add4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) ) |
97 |
79 82 87
|
ppncand |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
98 |
55
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) e. CC ) |
99 |
98 84 78
|
adddird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
100 |
1
|
eqcomi |
|- ( ( A ^ 2 ) + ( B ^ 2 ) ) = Q |
101 |
100
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = Q ) |
102 |
101
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) = ( Q x. ( C ^ 2 ) ) ) |
103 |
97 99 102
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( Q x. ( C ^ 2 ) ) ) |
104 |
84 98 19
|
adddird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. D ) = ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) |
105 |
84 98
|
addcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
106 |
105 101
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = Q ) |
107 |
106
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. D ) = ( Q x. D ) ) |
108 |
104 107
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) = ( Q x. D ) ) |
109 |
103 108
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
110 |
96 109
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
111 |
110
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) ) |
112 |
26 78 19
|
adddid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q x. ( ( C ^ 2 ) + D ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
113 |
112
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) = ( Q x. ( ( C ^ 2 ) + D ) ) ) |
114 |
26
|
sqvald |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q ^ 2 ) = ( Q x. Q ) ) |
115 |
113 114
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) = ( ( Q x. ( ( C ^ 2 ) + D ) ) / ( Q x. Q ) ) ) |
116 |
78 19
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + D ) e. CC ) |
117 |
116 26 26 32 32
|
divcan5d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. ( ( C ^ 2 ) + D ) ) / ( Q x. Q ) ) = ( ( ( C ^ 2 ) + D ) / Q ) ) |
118 |
115 117
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) = ( ( ( C ^ 2 ) + D ) / Q ) ) |
119 |
2
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) |
120 |
119
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + D ) = ( ( C ^ 2 ) + ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) ) |
121 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
122 |
121
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) |
123 |
122
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> R e. CC ) |
124 |
123
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R ^ 2 ) e. CC ) |
125 |
124 26
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) x. Q ) e. CC ) |
126 |
78 125
|
pncan3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) = ( ( R ^ 2 ) x. Q ) ) |
127 |
120 126
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + D ) = ( ( R ^ 2 ) x. Q ) ) |
128 |
116 124 26 32
|
divmul3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( C ^ 2 ) + D ) / Q ) = ( R ^ 2 ) <-> ( ( C ^ 2 ) + D ) = ( ( R ^ 2 ) x. Q ) ) ) |
129 |
127 128
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( C ^ 2 ) + D ) / Q ) = ( R ^ 2 ) ) |
130 |
118 129
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) = ( R ^ 2 ) ) |
131 |
111 130
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( R ^ 2 ) ) |
132 |
76 95 131
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) |
133 |
5 22 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
134 |
5 9 21
|
adddid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
135 |
3
|
adantr |
|- ( ( A e. RR /\ C e. RR ) -> A e. CC ) |
136 |
6
|
adantl |
|- ( ( A e. RR /\ C e. RR ) -> C e. CC ) |
137 |
135 135 136
|
mulassd |
|- ( ( A e. RR /\ C e. RR ) -> ( ( A x. A ) x. C ) = ( A x. ( A x. C ) ) ) |
138 |
135
|
sqvald |
|- ( ( A e. RR /\ C e. RR ) -> ( A ^ 2 ) = ( A x. A ) ) |
139 |
138
|
eqcomd |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. A ) = ( A ^ 2 ) ) |
140 |
139
|
oveq1d |
|- ( ( A e. RR /\ C e. RR ) -> ( ( A x. A ) x. C ) = ( ( A ^ 2 ) x. C ) ) |
141 |
137 140
|
eqtr3d |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. ( A x. C ) ) = ( ( A ^ 2 ) x. C ) ) |
142 |
141
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( A x. C ) ) = ( ( A ^ 2 ) x. C ) ) |
143 |
142
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( A x. C ) ) = ( ( A ^ 2 ) x. C ) ) |
144 |
5 12 20
|
mulassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. B ) x. ( sqrt ` D ) ) = ( A x. ( B x. ( sqrt ` D ) ) ) ) |
145 |
144
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( B x. ( sqrt ` D ) ) ) = ( ( A x. B ) x. ( sqrt ` D ) ) ) |
146 |
143 145
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
147 |
134 146
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
148 |
147
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
149 |
133 148
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
150 |
12 53 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
151 |
12 51 52
|
subdid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) = ( ( B x. ( B x. C ) ) - ( B x. ( A x. ( sqrt ` D ) ) ) ) ) |
152 |
|
simpl |
|- ( ( B e. RR /\ C e. RR ) -> B e. RR ) |
153 |
152
|
recnd |
|- ( ( B e. RR /\ C e. RR ) -> B e. CC ) |
154 |
|
simpr |
|- ( ( B e. RR /\ C e. RR ) -> C e. RR ) |
155 |
154
|
recnd |
|- ( ( B e. RR /\ C e. RR ) -> C e. CC ) |
156 |
153 153 155
|
mulassd |
|- ( ( B e. RR /\ C e. RR ) -> ( ( B x. B ) x. C ) = ( B x. ( B x. C ) ) ) |
157 |
10
|
sqvald |
|- ( B e. RR -> ( B ^ 2 ) = ( B x. B ) ) |
158 |
157
|
eqcomd |
|- ( B e. RR -> ( B x. B ) = ( B ^ 2 ) ) |
159 |
158
|
adantr |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. B ) = ( B ^ 2 ) ) |
160 |
159
|
oveq1d |
|- ( ( B e. RR /\ C e. RR ) -> ( ( B x. B ) x. C ) = ( ( B ^ 2 ) x. C ) ) |
161 |
156 160
|
eqtr3d |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
162 |
161
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
163 |
162
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
164 |
12 5 20
|
mulassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( sqrt ` D ) ) = ( B x. ( A x. ( sqrt ` D ) ) ) ) |
165 |
11 4
|
mulcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. A ) = ( A x. B ) ) |
166 |
165
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. A ) = ( A x. B ) ) |
167 |
166
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( sqrt ` D ) ) = ( ( A x. B ) x. ( sqrt ` D ) ) ) |
168 |
164 167
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( A x. ( sqrt ` D ) ) ) = ( ( A x. B ) x. ( sqrt ` D ) ) ) |
169 |
163 168
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( B x. C ) ) - ( B x. ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
170 |
151 169
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
171 |
170
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
172 |
150 171
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
173 |
149 172
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
174 |
77 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. C ) e. CC ) |
175 |
5 12
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. B ) e. CC ) |
176 |
175 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. B ) x. ( sqrt ` D ) ) e. CC ) |
177 |
174 176
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
178 |
84 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. C ) e. CC ) |
179 |
178 176
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
180 |
177 179 26 32
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
181 |
174 176 178
|
ppncand |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
182 |
77 84 8
|
adddird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. C ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
183 |
1
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
184 |
183
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = Q ) |
185 |
184
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. C ) = ( Q x. C ) ) |
186 |
181 182 185
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) |
187 |
177 179
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) e. CC ) |
188 |
187 8 26 32
|
divmul2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C <-> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) ) |
189 |
186 188
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C ) |
190 |
173 180 189
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) |
191 |
132 190
|
jca |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
192 |
|
oveq1 |
|- ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) -> ( X ^ 2 ) = ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
193 |
|
oveq1 |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( Y ^ 2 ) = ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
194 |
192 193
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) ) |
195 |
194
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
196 |
|
oveq2 |
|- ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) -> ( A x. X ) = ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
197 |
|
oveq2 |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( B x. Y ) = ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
198 |
196 197
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
199 |
198
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
200 |
195 199
|
anbi12d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) ) |
201 |
191 200
|
syl5ibrcom |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |
202 |
35 21
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC ) |
203 |
202 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
204 |
|
binom2sub |
|- ( ( ( A x. C ) e. CC /\ ( B x. ( sqrt ` D ) ) e. CC ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
205 |
35 21 204
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
206 |
39
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
207 |
206 46
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
208 |
205 207
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
209 |
208
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
210 |
203 209
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
211 |
51 56
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC ) |
212 |
211 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
213 |
|
binom2 |
|- ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
214 |
51 56 213
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
215 |
60 67
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
216 |
215 71
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
217 |
214 216
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
218 |
217
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
219 |
212 218
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
220 |
210 219
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
221 |
98 78
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
222 |
35 21
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) e. CC ) |
223 |
80 222
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) e. CC ) |
224 |
221 223
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
225 |
224 85
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) e. CC ) |
226 |
87 223
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
227 |
98 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. D ) e. CC ) |
228 |
226 227
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) e. CC ) |
229 |
225 228 91 94
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
230 |
224 85 226 227
|
add4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) ) |
231 |
221 223 87
|
nppcan3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
232 |
231 99 102
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( Q x. ( C ^ 2 ) ) ) |
233 |
232 108
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
234 |
230 233
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
235 |
234
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) ) |
236 |
220 229 235
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) ) |
237 |
236 130
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) |
238 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
239 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
240 |
238 239
|
remulcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
241 |
240
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. CC ) |
242 |
241
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
243 |
242 21
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC ) |
244 |
5 243 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
245 |
5 242 21
|
subdid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
246 |
143 145
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
247 |
245 246
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
248 |
247
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
249 |
244 248
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
250 |
51 52
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC ) |
251 |
12 250 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
252 |
12 51 52
|
adddid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) = ( ( B x. ( B x. C ) ) + ( B x. ( A x. ( sqrt ` D ) ) ) ) ) |
253 |
163 168
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( B x. C ) ) + ( B x. ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
254 |
252 253
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
255 |
254
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
256 |
251 255
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
257 |
249 256
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
258 |
174 176
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
259 |
178 176
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
260 |
258 259 26 32
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
261 |
174 176 178
|
nppcan3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
262 |
261 182 185
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) |
263 |
258 259
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) e. CC ) |
264 |
263 8 26 32
|
divmul2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C <-> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) ) |
265 |
262 264
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C ) |
266 |
257 260 265
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) |
267 |
237 266
|
jca |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
268 |
|
oveq1 |
|- ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) -> ( X ^ 2 ) = ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
269 |
|
oveq1 |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( Y ^ 2 ) = ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
270 |
268 269
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) ) |
271 |
270
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
272 |
|
oveq2 |
|- ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) -> ( A x. X ) = ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
273 |
|
oveq2 |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( B x. Y ) = ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
274 |
272 273
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
275 |
274
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
276 |
271 275
|
anbi12d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) ) |
277 |
267 276
|
syl5ibrcom |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |
278 |
201 277
|
jaod |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |