| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itsclc0xyqsolr.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itsclc0xyqsolr.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. CC ) |
| 6 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 7 |
6
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. CC ) |
| 9 |
5 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
| 10 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. CC ) |
| 13 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
| 14 |
13
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) |
| 15 |
14
|
anim2i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) ) |
| 16 |
15
|
3adant2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) ) |
| 17 |
1 2
|
itsclc0lem3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR ) |
| 18 |
16 17
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. RR ) |
| 19 |
18
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. CC ) |
| 20 |
19
|
sqrtcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( sqrt ` D ) e. CC ) |
| 21 |
12 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( sqrt ` D ) ) e. CC ) |
| 22 |
9 21
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 23 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
| 24 |
23
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. RR ) |
| 25 |
24
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. CC ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. CC ) |
| 27 |
|
simp11 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR ) |
| 28 |
|
simp12 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) |
| 29 |
|
simp2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 30 |
1
|
resum2sqorgt0 |
|- ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |
| 31 |
27 28 29 30
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 < Q ) |
| 32 |
31
|
gt0ne0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q =/= 0 ) |
| 33 |
22 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
| 34 |
4 7
|
mulcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. CC ) |
| 35 |
34
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
| 36 |
|
binom2 |
|- ( ( ( A x. C ) e. CC /\ ( B x. ( sqrt ` D ) ) e. CC ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 37 |
35 21 36
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 38 |
4 7
|
sqmuld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. C ) ^ 2 ) = ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) |
| 39 |
38
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) ^ 2 ) = ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) |
| 40 |
39
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
| 41 |
12 20
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( sqrt ` D ) ) ^ 2 ) = ( ( B ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) ) |
| 42 |
|
simp3r |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 <_ D ) |
| 43 |
|
resqrtth |
|- ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
| 44 |
18 42 43
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
| 45 |
44
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) = ( ( B ^ 2 ) x. D ) ) |
| 46 |
41 45
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( sqrt ` D ) ) ^ 2 ) = ( ( B ^ 2 ) x. D ) ) |
| 47 |
40 46
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) ^ 2 ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
| 48 |
37 47
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
| 49 |
48
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 50 |
33 49
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 51 |
12 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. C ) e. CC ) |
| 52 |
5 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
| 53 |
51 52
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC ) |
| 54 |
53 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
| 55 |
27
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. CC ) |
| 56 |
55 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
| 57 |
|
binom2sub |
|- ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 58 |
51 56 57
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 59 |
11 7
|
sqmuld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B x. C ) ^ 2 ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
| 60 |
59
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) ^ 2 ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
| 61 |
12 8 55 20
|
mul4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) = ( ( B x. A ) x. ( C x. ( sqrt ` D ) ) ) ) |
| 62 |
12 55
|
mulcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. A ) = ( A x. B ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( C x. ( sqrt ` D ) ) ) = ( ( A x. B ) x. ( C x. ( sqrt ` D ) ) ) ) |
| 64 |
55 12 8 20
|
mul4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. B ) x. ( C x. ( sqrt ` D ) ) ) = ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) |
| 65 |
63 64
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( C x. ( sqrt ` D ) ) ) = ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) |
| 66 |
61 65
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) = ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) |
| 67 |
66
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) = ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) |
| 68 |
60 67
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
| 69 |
55 20
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( sqrt ` D ) ) ^ 2 ) = ( ( A ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) ) |
| 70 |
44
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. ( ( sqrt ` D ) ^ 2 ) ) = ( ( A ^ 2 ) x. D ) ) |
| 71 |
69 70
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( sqrt ` D ) ) ^ 2 ) = ( ( A ^ 2 ) x. D ) ) |
| 72 |
68 71
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) ^ 2 ) - ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
| 73 |
58 72
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
| 74 |
73
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 75 |
54 74
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 76 |
50 75
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
| 77 |
5
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) e. CC ) |
| 78 |
8
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( C ^ 2 ) e. CC ) |
| 79 |
77 78
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
| 80 |
|
2cnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 2 e. CC ) |
| 81 |
9 21
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 82 |
80 81
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) e. CC ) |
| 83 |
79 82
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
| 84 |
12
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. CC ) |
| 85 |
84 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. D ) e. CC ) |
| 86 |
83 85
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) e. CC ) |
| 87 |
84 78
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
| 88 |
87 82
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
| 89 |
77 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. D ) e. CC ) |
| 90 |
88 89
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) e. CC ) |
| 91 |
26
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q ^ 2 ) e. CC ) |
| 92 |
|
2z |
|- 2 e. ZZ |
| 93 |
92
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 2 e. ZZ ) |
| 94 |
26 32 93
|
expne0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q ^ 2 ) =/= 0 ) |
| 95 |
86 90 91 94
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
| 96 |
83 85 88 89
|
add4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) ) |
| 97 |
79 82 87
|
ppncand |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
| 98 |
55
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) e. CC ) |
| 99 |
98 84 78
|
adddird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
| 100 |
1
|
eqcomi |
|- ( ( A ^ 2 ) + ( B ^ 2 ) ) = Q |
| 101 |
100
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = Q ) |
| 102 |
101
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) = ( Q x. ( C ^ 2 ) ) ) |
| 103 |
97 99 102
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( Q x. ( C ^ 2 ) ) ) |
| 104 |
84 98 19
|
adddird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. D ) = ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) |
| 105 |
84 98
|
addcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 106 |
105 101
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) = Q ) |
| 107 |
106
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. D ) = ( Q x. D ) ) |
| 108 |
104 107
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) = ( Q x. D ) ) |
| 109 |
103 108
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
| 110 |
96 109
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
| 111 |
110
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) ) |
| 112 |
26 78 19
|
adddid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q x. ( ( C ^ 2 ) + D ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
| 113 |
112
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) = ( Q x. ( ( C ^ 2 ) + D ) ) ) |
| 114 |
26
|
sqvald |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q ^ 2 ) = ( Q x. Q ) ) |
| 115 |
113 114
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) = ( ( Q x. ( ( C ^ 2 ) + D ) ) / ( Q x. Q ) ) ) |
| 116 |
78 19
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + D ) e. CC ) |
| 117 |
116 26 26 32 32
|
divcan5d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. ( ( C ^ 2 ) + D ) ) / ( Q x. Q ) ) = ( ( ( C ^ 2 ) + D ) / Q ) ) |
| 118 |
115 117
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) = ( ( ( C ^ 2 ) + D ) / Q ) ) |
| 119 |
2
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) |
| 120 |
119
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + D ) = ( ( C ^ 2 ) + ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) ) |
| 121 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
| 122 |
121
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) |
| 123 |
122
|
3ad2ant3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> R e. CC ) |
| 124 |
123
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R ^ 2 ) e. CC ) |
| 125 |
124 26
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) x. Q ) e. CC ) |
| 126 |
78 125
|
pncan3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) = ( ( R ^ 2 ) x. Q ) ) |
| 127 |
120 126
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C ^ 2 ) + D ) = ( ( R ^ 2 ) x. Q ) ) |
| 128 |
116 124 26 32
|
divmul3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( C ^ 2 ) + D ) / Q ) = ( R ^ 2 ) <-> ( ( C ^ 2 ) + D ) = ( ( R ^ 2 ) x. Q ) ) ) |
| 129 |
127 128
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( C ^ 2 ) + D ) / Q ) = ( R ^ 2 ) ) |
| 130 |
118 129
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) = ( R ^ 2 ) ) |
| 131 |
111 130
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( R ^ 2 ) ) |
| 132 |
76 95 131
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) |
| 133 |
5 22 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 134 |
5 9 21
|
adddid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
| 135 |
3
|
adantr |
|- ( ( A e. RR /\ C e. RR ) -> A e. CC ) |
| 136 |
6
|
adantl |
|- ( ( A e. RR /\ C e. RR ) -> C e. CC ) |
| 137 |
135 135 136
|
mulassd |
|- ( ( A e. RR /\ C e. RR ) -> ( ( A x. A ) x. C ) = ( A x. ( A x. C ) ) ) |
| 138 |
135
|
sqvald |
|- ( ( A e. RR /\ C e. RR ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 139 |
138
|
eqcomd |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. A ) = ( A ^ 2 ) ) |
| 140 |
139
|
oveq1d |
|- ( ( A e. RR /\ C e. RR ) -> ( ( A x. A ) x. C ) = ( ( A ^ 2 ) x. C ) ) |
| 141 |
137 140
|
eqtr3d |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. ( A x. C ) ) = ( ( A ^ 2 ) x. C ) ) |
| 142 |
141
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. ( A x. C ) ) = ( ( A ^ 2 ) x. C ) ) |
| 143 |
142
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( A x. C ) ) = ( ( A ^ 2 ) x. C ) ) |
| 144 |
5 12 20
|
mulassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. B ) x. ( sqrt ` D ) ) = ( A x. ( B x. ( sqrt ` D ) ) ) ) |
| 145 |
144
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( B x. ( sqrt ` D ) ) ) = ( ( A x. B ) x. ( sqrt ` D ) ) ) |
| 146 |
143 145
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 147 |
134 146
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 148 |
147
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 149 |
133 148
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 150 |
12 53 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 151 |
12 51 52
|
subdid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) = ( ( B x. ( B x. C ) ) - ( B x. ( A x. ( sqrt ` D ) ) ) ) ) |
| 152 |
|
simpl |
|- ( ( B e. RR /\ C e. RR ) -> B e. RR ) |
| 153 |
152
|
recnd |
|- ( ( B e. RR /\ C e. RR ) -> B e. CC ) |
| 154 |
|
simpr |
|- ( ( B e. RR /\ C e. RR ) -> C e. RR ) |
| 155 |
154
|
recnd |
|- ( ( B e. RR /\ C e. RR ) -> C e. CC ) |
| 156 |
153 153 155
|
mulassd |
|- ( ( B e. RR /\ C e. RR ) -> ( ( B x. B ) x. C ) = ( B x. ( B x. C ) ) ) |
| 157 |
10
|
sqvald |
|- ( B e. RR -> ( B ^ 2 ) = ( B x. B ) ) |
| 158 |
157
|
eqcomd |
|- ( B e. RR -> ( B x. B ) = ( B ^ 2 ) ) |
| 159 |
158
|
adantr |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. B ) = ( B ^ 2 ) ) |
| 160 |
159
|
oveq1d |
|- ( ( B e. RR /\ C e. RR ) -> ( ( B x. B ) x. C ) = ( ( B ^ 2 ) x. C ) ) |
| 161 |
156 160
|
eqtr3d |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
| 162 |
161
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
| 163 |
162
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
| 164 |
12 5 20
|
mulassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( sqrt ` D ) ) = ( B x. ( A x. ( sqrt ` D ) ) ) ) |
| 165 |
11 4
|
mulcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. A ) = ( A x. B ) ) |
| 166 |
165
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. A ) = ( A x. B ) ) |
| 167 |
166
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. A ) x. ( sqrt ` D ) ) = ( ( A x. B ) x. ( sqrt ` D ) ) ) |
| 168 |
164 167
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( A x. ( sqrt ` D ) ) ) = ( ( A x. B ) x. ( sqrt ` D ) ) ) |
| 169 |
163 168
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( B x. C ) ) - ( B x. ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 170 |
151 169
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 171 |
170
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 172 |
150 171
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 173 |
149 172
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 174 |
77 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. C ) e. CC ) |
| 175 |
5 12
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. B ) e. CC ) |
| 176 |
175 20
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. B ) x. ( sqrt ` D ) ) e. CC ) |
| 177 |
174 176
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
| 178 |
84 8
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. C ) e. CC ) |
| 179 |
178 176
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
| 180 |
177 179 26 32
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 181 |
174 176 178
|
ppncand |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
| 182 |
77 84 8
|
adddird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. C ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
| 183 |
1
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 184 |
183
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = Q ) |
| 185 |
184
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. C ) = ( Q x. C ) ) |
| 186 |
181 182 185
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) |
| 187 |
177 179
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) e. CC ) |
| 188 |
187 8 26 32
|
divmul2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C <-> ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) ) |
| 189 |
186 188
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C ) |
| 190 |
173 180 189
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) |
| 191 |
132 190
|
jca |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
| 192 |
|
oveq1 |
|- ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) -> ( X ^ 2 ) = ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
| 193 |
|
oveq1 |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( Y ^ 2 ) = ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
| 194 |
192 193
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) ) |
| 195 |
194
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 196 |
|
oveq2 |
|- ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) -> ( A x. X ) = ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 197 |
|
oveq2 |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( B x. Y ) = ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 198 |
196 197
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 199 |
198
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
| 200 |
195 199
|
anbi12d |
|- ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) ) |
| 201 |
191 200
|
syl5ibrcom |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |
| 202 |
35 21
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 203 |
202 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
| 204 |
|
binom2sub |
|- ( ( ( A x. C ) e. CC /\ ( B x. ( sqrt ` D ) ) e. CC ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 205 |
35 21 204
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 206 |
39
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
| 207 |
206 46
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) ^ 2 ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
| 208 |
205 207
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) ) |
| 209 |
208
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 210 |
203 209
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 211 |
51 56
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC ) |
| 212 |
211 26 32
|
sqdivd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) ) |
| 213 |
|
binom2 |
|- ( ( ( B x. C ) e. CC /\ ( A x. ( sqrt ` D ) ) e. CC ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 214 |
51 56 213
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) ) |
| 215 |
60 67
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
| 216 |
215 71
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) ^ 2 ) + ( 2 x. ( ( B x. C ) x. ( A x. ( sqrt ` D ) ) ) ) ) + ( ( A x. ( sqrt ` D ) ) ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
| 217 |
214 216
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) |
| 218 |
217
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ^ 2 ) / ( Q ^ 2 ) ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 219 |
212 218
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) = ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) |
| 220 |
210 219
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
| 221 |
98 78
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
| 222 |
35 21
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 223 |
80 222
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) e. CC ) |
| 224 |
221 223
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
| 225 |
224 85
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) e. CC ) |
| 226 |
87 223
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) e. CC ) |
| 227 |
98 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. D ) e. CC ) |
| 228 |
226 227
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) e. CC ) |
| 229 |
225 228 91 94
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) + ( ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) / ( Q ^ 2 ) ) ) ) |
| 230 |
224 85 226 227
|
add4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) ) |
| 231 |
221 223 87
|
nppcan3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
| 232 |
231 99 102
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) = ( Q x. ( C ^ 2 ) ) ) |
| 233 |
232 108
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) ) + ( ( ( B ^ 2 ) x. D ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
| 234 |
230 233
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) = ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) ) |
| 235 |
234
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( B ^ 2 ) x. D ) ) + ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( 2 x. ( ( A x. C ) x. ( B x. ( sqrt ` D ) ) ) ) ) + ( ( A ^ 2 ) x. D ) ) ) / ( Q ^ 2 ) ) = ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) ) |
| 236 |
220 229 235
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( ( ( Q x. ( C ^ 2 ) ) + ( Q x. D ) ) / ( Q ^ 2 ) ) ) |
| 237 |
236 130
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) |
| 238 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 239 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 240 |
238 239
|
remulcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 241 |
240
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. C ) e. CC ) |
| 242 |
241
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
| 243 |
242 21
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC ) |
| 244 |
5 243 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 245 |
5 242 21
|
subdid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
| 246 |
143 145
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 247 |
245 246
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 248 |
247
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 249 |
244 248
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 250 |
51 52
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC ) |
| 251 |
12 250 26 32
|
divassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 252 |
12 51 52
|
adddid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) = ( ( B x. ( B x. C ) ) + ( B x. ( A x. ( sqrt ` D ) ) ) ) ) |
| 253 |
163 168
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( B x. C ) ) + ( B x. ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 254 |
252 253
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) |
| 255 |
254
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 256 |
251 255
|
eqtr3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) = ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 257 |
249 256
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 258 |
174 176
|
subcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
| 259 |
178 176
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) e. CC ) |
| 260 |
258 259 26 32
|
divdird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) + ( ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 261 |
174 176 178
|
nppcan3d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
| 262 |
261 182 185
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) |
| 263 |
258 259
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) e. CC ) |
| 264 |
263 8 26 32
|
divmul2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C <-> ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) = ( Q x. C ) ) ) |
| 265 |
262 264
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( A ^ 2 ) x. C ) - ( ( A x. B ) x. ( sqrt ` D ) ) ) + ( ( ( B ^ 2 ) x. C ) + ( ( A x. B ) x. ( sqrt ` D ) ) ) ) / Q ) = C ) |
| 266 |
257 260 265
|
3eqtr2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) |
| 267 |
237 266
|
jca |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
| 268 |
|
oveq1 |
|- ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) -> ( X ^ 2 ) = ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
| 269 |
|
oveq1 |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( Y ^ 2 ) = ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) |
| 270 |
268 269
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) ) |
| 271 |
270
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 272 |
|
oveq2 |
|- ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) -> ( A x. X ) = ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 273 |
|
oveq2 |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( B x. Y ) = ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 274 |
272 273
|
oveqan12d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 275 |
274
|
eqeq1d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
| 276 |
271 275
|
anbi12d |
|- ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) + ( ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) ) |
| 277 |
267 276
|
syl5ibrcom |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |
| 278 |
201 277
|
jaod |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) ) |