Metamath Proof Explorer


Theorem itsclc0lem3

Description: Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023)

Ref Expression
Hypotheses itsclc0lem3.q
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
itsclc0lem3.d
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )
Assertion itsclc0lem3
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR )

Proof

Step Hyp Ref Expression
1 itsclc0lem3.q
 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
2 itsclc0lem3.d
 |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )
3 simpr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> R e. RR )
4 3 resqcld
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( R ^ 2 ) e. RR )
5 1 resum2sqcl
 |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR )
6 5 3adant3
 |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. RR )
7 6 adantr
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> Q e. RR )
8 4 7 remulcld
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( ( R ^ 2 ) x. Q ) e. RR )
9 simpl3
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> C e. RR )
10 9 resqcld
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( C ^ 2 ) e. RR )
11 8 10 resubcld
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR )
12 2 11 eqeltrid
 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR )