Metamath Proof Explorer


Theorem itsclc0lem3

Description: Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023)

Ref Expression
Hypotheses itsclc0lem3.q Q = A 2 + B 2
itsclc0lem3.d D = R 2 Q C 2
Assertion itsclc0lem3 A B C R D

Proof

Step Hyp Ref Expression
1 itsclc0lem3.q Q = A 2 + B 2
2 itsclc0lem3.d D = R 2 Q C 2
3 simpr A B C R R
4 3 resqcld A B C R R 2
5 1 resum2sqcl A B Q
6 5 3adant3 A B C Q
7 6 adantr A B C R Q
8 4 7 remulcld A B C R R 2 Q
9 simpl3 A B C R C
10 9 resqcld A B C R C 2
11 8 10 resubcld A B C R R 2 Q C 2
12 2 11 eqeltrid A B C R D