Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|
2 |
|
itscnhlc0yqe.t |
|
3 |
|
itscnhlc0yqe.u |
|
4 |
|
recn |
|
5 |
4
|
adantr |
|
6 |
5
|
3ad2ant1 |
|
7 |
6
|
3ad2ant1 |
|
8 |
|
simp2 |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
simpr |
|
11 |
10
|
3ad2ant3 |
|
12 |
9 11
|
remulcld |
|
13 |
12
|
recnd |
|
14 |
|
recn |
|
15 |
14
|
adantr |
|
16 |
15
|
3ad2ant3 |
|
17 |
|
simp3 |
|
18 |
17
|
recnd |
|
19 |
18
|
3ad2ant1 |
|
20 |
|
simp11r |
|
21 |
7 13 16 19 20
|
lineq |
|
22 |
21
|
anbi2d |
|
23 |
|
oveq1 |
|
24 |
23
|
oveq1d |
|
25 |
24
|
eqeq1d |
|
26 |
25
|
biimpac |
|
27 |
|
simpl |
|
28 |
27
|
3ad2ant1 |
|
29 |
28
|
resqcld |
|
30 |
29
|
recnd |
|
31 |
30
|
3ad2ant1 |
|
32 |
17
|
3ad2ant1 |
|
33 |
32 12
|
resubcld |
|
34 |
28
|
3ad2ant1 |
|
35 |
33 34 20
|
redivcld |
|
36 |
35
|
resqcld |
|
37 |
36
|
recnd |
|
38 |
10
|
resqcld |
|
39 |
38
|
recnd |
|
40 |
39
|
3ad2ant3 |
|
41 |
31 37 40
|
adddid |
|
42 |
33
|
recnd |
|
43 |
27
|
recnd |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
3ad2ant1 |
|
46 |
42 45 20
|
sqdivd |
|
47 |
46
|
oveq2d |
|
48 |
33
|
resqcld |
|
49 |
48
|
recnd |
|
50 |
27
|
resqcld |
|
51 |
50
|
recnd |
|
52 |
51
|
3ad2ant1 |
|
53 |
52
|
3ad2ant1 |
|
54 |
|
sqne0 |
|
55 |
4 54
|
syl |
|
56 |
55
|
biimpar |
|
57 |
56
|
3ad2ant1 |
|
58 |
57
|
3ad2ant1 |
|
59 |
49 53 58
|
divcan2d |
|
60 |
47 59
|
eqtrd |
|
61 |
60
|
oveq1d |
|
62 |
41 61
|
eqtrd |
|
63 |
62
|
eqeq1d |
|
64 |
11
|
resqcld |
|
65 |
36 64
|
readdcld |
|
66 |
65
|
recnd |
|
67 |
|
rpre |
|
68 |
67
|
resqcld |
|
69 |
68
|
recnd |
|
70 |
69
|
3ad2ant2 |
|
71 |
50
|
3ad2ant1 |
|
72 |
71
|
3ad2ant1 |
|
73 |
72
|
recnd |
|
74 |
66 70 73 58
|
mulcand |
|
75 |
|
binom2sub |
|
76 |
19 13 75
|
syl2anc |
|
77 |
76
|
oveq1d |
|
78 |
77
|
eqeq1d |
|
79 |
17
|
resqcld |
|
80 |
79
|
3ad2ant1 |
|
81 |
|
2re |
|
82 |
81
|
a1i |
|
83 |
32 12
|
remulcld |
|
84 |
82 83
|
remulcld |
|
85 |
80 84
|
resubcld |
|
86 |
12
|
resqcld |
|
87 |
85 86
|
readdcld |
|
88 |
72 64
|
remulcld |
|
89 |
87 88
|
readdcld |
|
90 |
89
|
recnd |
|
91 |
68
|
3ad2ant2 |
|
92 |
72 91
|
remulcld |
|
93 |
92
|
recnd |
|
94 |
90 93 93
|
subcan2ad |
|
95 |
85
|
recnd |
|
96 |
86
|
recnd |
|
97 |
88
|
recnd |
|
98 |
95 96 97
|
addassd |
|
99 |
32
|
recnd |
|
100 |
8
|
recnd |
|
101 |
100
|
3ad2ant1 |
|
102 |
11
|
recnd |
|
103 |
99 101 102
|
mulassd |
|
104 |
18 100
|
mulcomd |
|
105 |
104
|
3ad2ant1 |
|
106 |
105
|
oveq1d |
|
107 |
103 106
|
eqtr3d |
|
108 |
107
|
oveq2d |
|
109 |
82
|
recnd |
|
110 |
8 17
|
remulcld |
|
111 |
110
|
3ad2ant1 |
|
112 |
111
|
recnd |
|
113 |
109 112 102
|
mulassd |
|
114 |
108 113
|
eqtr4d |
|
115 |
114
|
oveq2d |
|
116 |
101 102
|
sqmuld |
|
117 |
116
|
oveq1d |
|
118 |
9
|
resqcld |
|
119 |
118
|
recnd |
|
120 |
34
|
resqcld |
|
121 |
120
|
recnd |
|
122 |
64
|
recnd |
|
123 |
119 121 122
|
adddird |
|
124 |
117 123
|
eqtr4d |
|
125 |
115 124
|
oveq12d |
|
126 |
98 125
|
eqtrd |
|
127 |
126
|
oveq1d |
|
128 |
80
|
recnd |
|
129 |
8
|
resqcld |
|
130 |
129 71
|
readdcld |
|
131 |
130
|
3ad2ant1 |
|
132 |
131 64
|
remulcld |
|
133 |
9 32
|
remulcld |
|
134 |
82 133
|
remulcld |
|
135 |
134 11
|
remulcld |
|
136 |
132 135
|
resubcld |
|
137 |
136
|
recnd |
|
138 |
135
|
recnd |
|
139 |
132
|
recnd |
|
140 |
128 138 139
|
subadd23d |
|
141 |
128 137 140
|
comraddd |
|
142 |
141
|
oveq1d |
|
143 |
137 128 93
|
addsubassd |
|
144 |
139 138
|
negsubd |
|
145 |
144
|
eqcomd |
|
146 |
145
|
oveq1d |
|
147 |
135
|
renegcld |
|
148 |
147
|
recnd |
|
149 |
80 92
|
resubcld |
|
150 |
149
|
recnd |
|
151 |
139 148 150
|
addassd |
|
152 |
143 146 151
|
3eqtrd |
|
153 |
127 142 152
|
3eqtrd |
|
154 |
93
|
subidd |
|
155 |
153 154
|
eqeq12d |
|
156 |
78 94 155
|
3bitr2d |
|
157 |
63 74 156
|
3bitr3d |
|
158 |
1
|
a1i |
|
159 |
121 119 158
|
comraddd |
|
160 |
159
|
oveq1d |
|
161 |
2
|
a1i |
|
162 |
161
|
oveq1d |
|
163 |
134
|
recnd |
|
164 |
163 102
|
mulneg1d |
|
165 |
162 164
|
eqtrd |
|
166 |
3
|
a1i |
|
167 |
165 166
|
oveq12d |
|
168 |
160 167
|
oveq12d |
|
169 |
168
|
eqcomd |
|
170 |
169
|
eqeq1d |
|
171 |
170
|
biimpd |
|
172 |
157 171
|
sylbid |
|
173 |
26 172
|
syl5 |
|
174 |
22 173
|
sylbid |
|