Step |
Hyp |
Ref |
Expression |
1 |
|
itsclc0.i |
|
2 |
|
itsclc0.e |
|
3 |
|
itsclc0.p |
|
4 |
|
itsclc0.s |
|
5 |
|
itsclc0.0 |
|
6 |
|
itsclc0.q |
|
7 |
|
itsclc0.d |
|
8 |
|
itsclc0.l |
|
9 |
|
rprege0 |
|
10 |
|
elrege0 |
|
11 |
9 10
|
sylibr |
|
12 |
11
|
adantr |
|
13 |
12
|
3ad2ant3 |
|
14 |
|
eqid |
|
15 |
1 2 3 4 5 14
|
2sphere0 |
|
16 |
15
|
eleq2d |
|
17 |
13 16
|
syl |
|
18 |
|
fveq1 |
|
19 |
18
|
oveq2d |
|
20 |
|
fveq1 |
|
21 |
20
|
oveq2d |
|
22 |
19 21
|
oveq12d |
|
23 |
22
|
eqeq1d |
|
24 |
23 8
|
elrab2 |
|
25 |
24
|
a1i |
|
26 |
17 25
|
anbi12d |
|
27 |
18
|
oveq1d |
|
28 |
20
|
oveq1d |
|
29 |
27 28
|
oveq12d |
|
30 |
29
|
eqeq1d |
|
31 |
30
|
elrab |
|
32 |
|
3simpa |
|
33 |
32
|
adantr |
|
34 |
|
simpl3 |
|
35 |
1 3
|
rrx2pxel |
|
36 |
1 3
|
rrx2pyel |
|
37 |
35 36
|
jca |
|
38 |
37
|
adantl |
|
39 |
6 7
|
itsclc0xyqsol |
|
40 |
33 34 38 39
|
syl3anc |
|
41 |
40
|
expcomd |
|
42 |
41
|
expimpd |
|
43 |
42
|
com23 |
|
44 |
43
|
adantld |
|
45 |
31 44
|
syl5bi |
|
46 |
45
|
impd |
|
47 |
26 46
|
sylbid |
|