| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itsclc0.i |
|
| 2 |
|
itsclc0.e |
|
| 3 |
|
itsclc0.p |
|
| 4 |
|
itsclc0.s |
|
| 5 |
|
itsclc0.0 |
|
| 6 |
|
itsclc0.q |
|
| 7 |
|
itsclc0.d |
|
| 8 |
|
itsclc0.l |
|
| 9 |
|
rprege0 |
|
| 10 |
|
elrege0 |
|
| 11 |
9 10
|
sylibr |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
3ad2ant3 |
|
| 14 |
|
eqid |
|
| 15 |
1 2 3 4 5 14
|
2sphere0 |
|
| 16 |
15
|
eleq2d |
|
| 17 |
13 16
|
syl |
|
| 18 |
|
fveq1 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
fveq1 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
19 21
|
oveq12d |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
23 8
|
elrab2 |
|
| 25 |
24
|
a1i |
|
| 26 |
17 25
|
anbi12d |
|
| 27 |
18
|
oveq1d |
|
| 28 |
20
|
oveq1d |
|
| 29 |
27 28
|
oveq12d |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
30
|
elrab |
|
| 32 |
|
3simpa |
|
| 33 |
32
|
adantr |
|
| 34 |
|
simpl3 |
|
| 35 |
1 3
|
rrx2pxel |
|
| 36 |
1 3
|
rrx2pyel |
|
| 37 |
35 36
|
jca |
|
| 38 |
37
|
adantl |
|
| 39 |
6 7
|
itsclc0xyqsol |
|
| 40 |
33 34 38 39
|
syl3anc |
|
| 41 |
40
|
expcomd |
|
| 42 |
41
|
expimpd |
|
| 43 |
42
|
com23 |
|
| 44 |
43
|
adantld |
|
| 45 |
31 44
|
biimtrid |
|
| 46 |
45
|
impd |
|
| 47 |
26 46
|
sylbid |
|