Metamath Proof Explorer


Definition df-sph

Description: Definition of spheres for given centers and radii in a metric space (or more generally, in a distance space, see distspace , or even in any extended structure having a base set and a distance function into the real numbers. (Contributed by AV, 14-Jan-2023)

Ref Expression
Assertion df-sph Sphere=wVxBasew,r0+∞pBasew|pdistwx=r

Detailed syntax breakdown

Step Hyp Ref Expression
0 csph classSphere
1 vw setvarw
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 vr setvarr
8 cc0 class0
9 cicc class.
10 cpnf class+∞
11 8 10 9 co class0+∞
12 vp setvarp
13 12 cv setvarp
14 cds classdist
15 5 14 cfv classdistw
16 3 cv setvarx
17 13 16 15 co classpdistwx
18 7 cv setvarr
19 17 18 wceq wffpdistwx=r
20 19 12 6 crab classpBasew|pdistwx=r
21 3 7 6 11 20 cmpo classxBasew,r0+∞pBasew|pdistwx=r
22 1 2 21 cmpt classwVxBasew,r0+∞pBasew|pdistwx=r
23 0 22 wceq wffSphere=wVxBasew,r0+∞pBasew|pdistwx=r