Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itscnhlc0yqe.t |
|- T = -u ( 2 x. ( B x. C ) ) |
3 |
|
itscnhlc0yqe.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
5 |
4
|
adantr |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) |
6 |
5
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. CC ) |
7 |
6
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
8 |
|
simp2 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> B e. RR ) |
9 |
8
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. RR ) |
10 |
|
simpr |
|- ( ( X e. RR /\ Y e. RR ) -> Y e. RR ) |
11 |
10
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. RR ) |
12 |
9 11
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. Y ) e. RR ) |
13 |
12
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. Y ) e. CC ) |
14 |
|
recn |
|- ( X e. RR -> X e. CC ) |
15 |
14
|
adantr |
|- ( ( X e. RR /\ Y e. RR ) -> X e. CC ) |
16 |
15
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
17 |
|
simp3 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> C e. RR ) |
18 |
17
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> C e. CC ) |
19 |
18
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
20 |
|
simp11r |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A =/= 0 ) |
21 |
7 13 16 19 20
|
lineq |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> X = ( ( C - ( B x. Y ) ) / A ) ) ) |
22 |
21
|
anbi2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ X = ( ( C - ( B x. Y ) ) / A ) ) ) ) |
23 |
|
oveq1 |
|- ( X = ( ( C - ( B x. Y ) ) / A ) -> ( X ^ 2 ) = ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) |
24 |
23
|
oveq1d |
|- ( X = ( ( C - ( B x. Y ) ) / A ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) |
25 |
24
|
eqeq1d |
|- ( X = ( ( C - ( B x. Y ) ) / A ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) |
26 |
25
|
biimpac |
|- ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ X = ( ( C - ( B x. Y ) ) / A ) ) -> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) |
27 |
|
simpl |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
28 |
27
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. RR ) |
29 |
28
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. RR ) |
30 |
29
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
31 |
30
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
32 |
17
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
33 |
32 12
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C - ( B x. Y ) ) e. RR ) |
34 |
28
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) |
35 |
33 34 20
|
redivcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) / A ) e. RR ) |
36 |
35
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) e. CC ) |
38 |
10
|
resqcld |
|- ( ( X e. RR /\ Y e. RR ) -> ( Y ^ 2 ) e. RR ) |
39 |
38
|
recnd |
|- ( ( X e. RR /\ Y e. RR ) -> ( Y ^ 2 ) e. CC ) |
40 |
39
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Y ^ 2 ) e. CC ) |
41 |
31 37 40
|
adddid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
42 |
33
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C - ( B x. Y ) ) e. CC ) |
43 |
27
|
recnd |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) |
44 |
43
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. CC ) |
45 |
44
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
46 |
42 45 20
|
sqdivd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) = ( ( ( C - ( B x. Y ) ) ^ 2 ) / ( A ^ 2 ) ) ) |
47 |
46
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) = ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) ^ 2 ) / ( A ^ 2 ) ) ) ) |
48 |
33
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) ^ 2 ) e. RR ) |
49 |
48
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) ^ 2 ) e. CC ) |
50 |
27
|
resqcld |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) e. RR ) |
51 |
50
|
recnd |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) e. CC ) |
52 |
51
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
53 |
52
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
54 |
|
sqne0 |
|- ( A e. CC -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
55 |
4 54
|
syl |
|- ( A e. RR -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
56 |
55
|
biimpar |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) =/= 0 ) |
57 |
56
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) =/= 0 ) |
58 |
57
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) =/= 0 ) |
59 |
49 53 58
|
divcan2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) ^ 2 ) / ( A ^ 2 ) ) ) = ( ( C - ( B x. Y ) ) ^ 2 ) ) |
60 |
47 59
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) = ( ( C - ( B x. Y ) ) ^ 2 ) ) |
61 |
60
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
62 |
41 61
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
63 |
62
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
64 |
11
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Y ^ 2 ) e. RR ) |
65 |
36 64
|
readdcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) e. RR ) |
66 |
65
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) e. CC ) |
67 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
68 |
67
|
resqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR ) |
69 |
68
|
recnd |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
70 |
69
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) |
71 |
50
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. RR ) |
72 |
71
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. RR ) |
73 |
72
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
74 |
66 70 73 58
|
mulcand |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) |
75 |
|
binom2sub |
|- ( ( C e. CC /\ ( B x. Y ) e. CC ) -> ( ( C - ( B x. Y ) ) ^ 2 ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) ) |
76 |
19 13 75
|
syl2anc |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) ^ 2 ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) ) |
77 |
76
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
78 |
77
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
79 |
17
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( C ^ 2 ) e. RR ) |
80 |
79
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. RR ) |
81 |
|
2re |
|- 2 e. RR |
82 |
81
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. RR ) |
83 |
32 12
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C x. ( B x. Y ) ) e. RR ) |
84 |
82 83
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( C x. ( B x. Y ) ) ) e. RR ) |
85 |
80 84
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) e. RR ) |
86 |
12
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) e. RR ) |
87 |
85 86
|
readdcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) e. RR ) |
88 |
72 64
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( Y ^ 2 ) ) e. RR ) |
89 |
87 88
|
readdcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) e. RR ) |
90 |
89
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) e. CC ) |
91 |
68
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. RR ) |
92 |
72 91
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. RR ) |
93 |
92
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
94 |
90 93 93
|
subcan2ad |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) <-> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
95 |
85
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) e. CC ) |
96 |
86
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) e. CC ) |
97 |
88
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( Y ^ 2 ) ) e. CC ) |
98 |
95 96 97
|
addassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) ) |
99 |
32
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
100 |
8
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> B e. CC ) |
101 |
100
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
102 |
11
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
103 |
99 101 102
|
mulassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C x. B ) x. Y ) = ( C x. ( B x. Y ) ) ) |
104 |
18 100
|
mulcomd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( C x. B ) = ( B x. C ) ) |
105 |
104
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C x. B ) = ( B x. C ) ) |
106 |
105
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C x. B ) x. Y ) = ( ( B x. C ) x. Y ) ) |
107 |
103 106
|
eqtr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C x. ( B x. Y ) ) = ( ( B x. C ) x. Y ) ) |
108 |
107
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( C x. ( B x. Y ) ) ) = ( 2 x. ( ( B x. C ) x. Y ) ) ) |
109 |
82
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) |
110 |
8 17
|
remulcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
111 |
110
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. RR ) |
112 |
111
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
113 |
109 112 102
|
mulassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) x. Y ) = ( 2 x. ( ( B x. C ) x. Y ) ) ) |
114 |
108 113
|
eqtr4d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( C x. ( B x. Y ) ) ) = ( ( 2 x. ( B x. C ) ) x. Y ) ) |
115 |
114
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) = ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) ) |
116 |
101 102
|
sqmuld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) = ( ( B ^ 2 ) x. ( Y ^ 2 ) ) ) |
117 |
116
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( B ^ 2 ) x. ( Y ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
118 |
9
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. RR ) |
119 |
118
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. CC ) |
120 |
34
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. RR ) |
121 |
120
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
122 |
64
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Y ^ 2 ) e. CC ) |
123 |
119 121 122
|
adddird |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) = ( ( ( B ^ 2 ) x. ( Y ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
124 |
117 123
|
eqtr4d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) |
125 |
115 124
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) = ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) ) |
126 |
98 125
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) ) |
127 |
126
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
128 |
80
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) |
129 |
8
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) e. RR ) |
130 |
129 71
|
readdcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) e. RR ) |
131 |
130
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) e. RR ) |
132 |
131 64
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) e. RR ) |
133 |
9 32
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. RR ) |
134 |
82 133
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. RR ) |
135 |
134 11
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) x. Y ) e. RR ) |
136 |
132 135
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) e. RR ) |
137 |
136
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) e. CC ) |
138 |
135
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) x. Y ) e. CC ) |
139 |
132
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) e. CC ) |
140 |
128 138 139
|
subadd23d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) = ( ( C ^ 2 ) + ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) ) ) |
141 |
128 137 140
|
comraddd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) = ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) ) |
142 |
141
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
143 |
137 128 93
|
addsubassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
144 |
139 138
|
negsubd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) ) |
145 |
144
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) ) |
146 |
145
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
147 |
135
|
renegcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> -u ( ( 2 x. ( B x. C ) ) x. Y ) e. RR ) |
148 |
147
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> -u ( ( 2 x. ( B x. C ) ) x. Y ) e. CC ) |
149 |
80 92
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. RR ) |
150 |
149
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
151 |
139 148 150
|
addassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
152 |
143 146 151
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
153 |
127 142 152
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
154 |
93
|
subidd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = 0 ) |
155 |
153 154
|
eqeq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) <-> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
156 |
78 94 155
|
3bitr2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
157 |
63 74 156
|
3bitr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
158 |
1
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
159 |
121 119 158
|
comraddd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Q = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
160 |
159
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Q x. ( Y ^ 2 ) ) = ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) |
161 |
2
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> T = -u ( 2 x. ( B x. C ) ) ) |
162 |
161
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( T x. Y ) = ( -u ( 2 x. ( B x. C ) ) x. Y ) ) |
163 |
134
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) |
164 |
163 102
|
mulneg1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( -u ( 2 x. ( B x. C ) ) x. Y ) = -u ( ( 2 x. ( B x. C ) ) x. Y ) ) |
165 |
162 164
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( T x. Y ) = -u ( ( 2 x. ( B x. C ) ) x. Y ) ) |
166 |
3
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
167 |
165 166
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( T x. Y ) + U ) = ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
168 |
160 167
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
169 |
168
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) ) |
170 |
169
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
171 |
170
|
biimpd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
172 |
157 171
|
sylbid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
173 |
26 172
|
syl5 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ X = ( ( C - ( B x. Y ) ) / A ) ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
174 |
22 173
|
sylbid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |