| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itscnhlc0yqe.t |
|- T = -u ( 2 x. ( B x. C ) ) |
| 3 |
|
itscnhlc0yqe.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
| 4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 5 |
4
|
adantr |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
| 8 |
|
simp2 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. RR ) |
| 10 |
|
simpr |
|- ( ( X e. RR /\ Y e. RR ) -> Y e. RR ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. RR ) |
| 12 |
9 11
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. Y ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. Y ) e. CC ) |
| 14 |
|
recn |
|- ( X e. RR -> X e. CC ) |
| 15 |
14
|
adantr |
|- ( ( X e. RR /\ Y e. RR ) -> X e. CC ) |
| 16 |
15
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
| 17 |
|
simp3 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
| 20 |
|
simp11r |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A =/= 0 ) |
| 21 |
7 13 16 19 20
|
lineq |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> X = ( ( C - ( B x. Y ) ) / A ) ) ) |
| 22 |
21
|
anbi2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ X = ( ( C - ( B x. Y ) ) / A ) ) ) ) |
| 23 |
|
oveq1 |
|- ( X = ( ( C - ( B x. Y ) ) / A ) -> ( X ^ 2 ) = ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) |
| 24 |
23
|
oveq1d |
|- ( X = ( ( C - ( B x. Y ) ) / A ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) |
| 25 |
24
|
eqeq1d |
|- ( X = ( ( C - ( B x. Y ) ) / A ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 26 |
25
|
biimpac |
|- ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ X = ( ( C - ( B x. Y ) ) / A ) ) -> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) |
| 27 |
|
simpl |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 29 |
28
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. RR ) |
| 30 |
29
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
| 31 |
30
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
| 32 |
17
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
| 33 |
32 12
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C - ( B x. Y ) ) e. RR ) |
| 34 |
28
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) |
| 35 |
33 34 20
|
redivcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) / A ) e. RR ) |
| 36 |
35
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) e. CC ) |
| 38 |
10
|
resqcld |
|- ( ( X e. RR /\ Y e. RR ) -> ( Y ^ 2 ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ( X e. RR /\ Y e. RR ) -> ( Y ^ 2 ) e. CC ) |
| 40 |
39
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Y ^ 2 ) e. CC ) |
| 41 |
31 37 40
|
adddid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
| 42 |
33
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C - ( B x. Y ) ) e. CC ) |
| 43 |
27
|
recnd |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. CC ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
| 46 |
42 45 20
|
sqdivd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) = ( ( ( C - ( B x. Y ) ) ^ 2 ) / ( A ^ 2 ) ) ) |
| 47 |
46
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) = ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) ^ 2 ) / ( A ^ 2 ) ) ) ) |
| 48 |
33
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) ^ 2 ) e. RR ) |
| 49 |
48
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) ^ 2 ) e. CC ) |
| 50 |
27
|
resqcld |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) e. CC ) |
| 52 |
51
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
| 53 |
52
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
| 54 |
|
sqne0 |
|- ( A e. CC -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
| 55 |
4 54
|
syl |
|- ( A e. RR -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
| 56 |
55
|
biimpar |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) =/= 0 ) |
| 57 |
56
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) =/= 0 ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) =/= 0 ) |
| 59 |
49 53 58
|
divcan2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) ^ 2 ) / ( A ^ 2 ) ) ) = ( ( C - ( B x. Y ) ) ^ 2 ) ) |
| 60 |
47 59
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) = ( ( C - ( B x. Y ) ) ^ 2 ) ) |
| 61 |
60
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
| 62 |
41 61
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
| 63 |
62
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 64 |
11
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Y ^ 2 ) e. RR ) |
| 65 |
36 64
|
readdcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) e. RR ) |
| 66 |
65
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) e. CC ) |
| 67 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
| 68 |
67
|
resqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. RR ) |
| 69 |
68
|
recnd |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
| 70 |
69
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) |
| 71 |
50
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. RR ) |
| 72 |
71
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. RR ) |
| 73 |
72
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
| 74 |
66 70 73 58
|
mulcand |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 75 |
|
binom2sub |
|- ( ( C e. CC /\ ( B x. Y ) e. CC ) -> ( ( C - ( B x. Y ) ) ^ 2 ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) ) |
| 76 |
19 13 75
|
syl2anc |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C - ( B x. Y ) ) ^ 2 ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) ) |
| 77 |
76
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
| 78 |
77
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 79 |
17
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( C ^ 2 ) e. RR ) |
| 80 |
79
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. RR ) |
| 81 |
|
2re |
|- 2 e. RR |
| 82 |
81
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. RR ) |
| 83 |
32 12
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C x. ( B x. Y ) ) e. RR ) |
| 84 |
82 83
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( C x. ( B x. Y ) ) ) e. RR ) |
| 85 |
80 84
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) e. RR ) |
| 86 |
12
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) e. RR ) |
| 87 |
85 86
|
readdcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) e. RR ) |
| 88 |
72 64
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( Y ^ 2 ) ) e. RR ) |
| 89 |
87 88
|
readdcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) e. RR ) |
| 90 |
89
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) e. CC ) |
| 91 |
68
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. RR ) |
| 92 |
72 91
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. RR ) |
| 93 |
92
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
| 94 |
90 93 93
|
subcan2ad |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) <-> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 95 |
85
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) e. CC ) |
| 96 |
86
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) e. CC ) |
| 97 |
88
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( Y ^ 2 ) ) e. CC ) |
| 98 |
95 96 97
|
addassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) ) |
| 99 |
32
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
| 100 |
8
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 101 |
100
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
| 102 |
11
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
| 103 |
99 101 102
|
mulassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C x. B ) x. Y ) = ( C x. ( B x. Y ) ) ) |
| 104 |
18 100
|
mulcomd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( C x. B ) = ( B x. C ) ) |
| 105 |
104
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C x. B ) = ( B x. C ) ) |
| 106 |
105
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C x. B ) x. Y ) = ( ( B x. C ) x. Y ) ) |
| 107 |
103 106
|
eqtr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C x. ( B x. Y ) ) = ( ( B x. C ) x. Y ) ) |
| 108 |
107
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( C x. ( B x. Y ) ) ) = ( 2 x. ( ( B x. C ) x. Y ) ) ) |
| 109 |
82
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) |
| 110 |
8 17
|
remulcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
| 111 |
110
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. RR ) |
| 112 |
111
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
| 113 |
109 112 102
|
mulassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) x. Y ) = ( 2 x. ( ( B x. C ) x. Y ) ) ) |
| 114 |
108 113
|
eqtr4d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( C x. ( B x. Y ) ) ) = ( ( 2 x. ( B x. C ) ) x. Y ) ) |
| 115 |
114
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) = ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) ) |
| 116 |
101 102
|
sqmuld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) = ( ( B ^ 2 ) x. ( Y ^ 2 ) ) ) |
| 117 |
116
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( B ^ 2 ) x. ( Y ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
| 118 |
9
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. RR ) |
| 119 |
118
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. CC ) |
| 120 |
34
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. RR ) |
| 121 |
120
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
| 122 |
64
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Y ^ 2 ) e. CC ) |
| 123 |
119 121 122
|
adddird |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) = ( ( ( B ^ 2 ) x. ( Y ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) |
| 124 |
117 123
|
eqtr4d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) |
| 125 |
115 124
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( ( B x. Y ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) ) = ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) ) |
| 126 |
98 125
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) ) |
| 127 |
126
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 128 |
80
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) |
| 129 |
8
|
resqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) e. RR ) |
| 130 |
129 71
|
readdcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) e. RR ) |
| 131 |
130
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B ^ 2 ) + ( A ^ 2 ) ) e. RR ) |
| 132 |
131 64
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) e. RR ) |
| 133 |
9 32
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. RR ) |
| 134 |
82 133
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. RR ) |
| 135 |
134 11
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) x. Y ) e. RR ) |
| 136 |
132 135
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) e. RR ) |
| 137 |
136
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) e. CC ) |
| 138 |
135
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) x. Y ) e. CC ) |
| 139 |
132
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) e. CC ) |
| 140 |
128 138 139
|
subadd23d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) = ( ( C ^ 2 ) + ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) ) ) |
| 141 |
128 137 140
|
comraddd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) = ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) ) |
| 142 |
141
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C ^ 2 ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 143 |
137 128 93
|
addsubassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
| 144 |
139 138
|
negsubd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) ) |
| 145 |
144
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) ) |
| 146 |
145
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
| 147 |
135
|
renegcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> -u ( ( 2 x. ( B x. C ) ) x. Y ) e. RR ) |
| 148 |
147
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> -u ( ( 2 x. ( B x. C ) ) x. Y ) e. CC ) |
| 149 |
80 92
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. RR ) |
| 150 |
149
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
| 151 |
139 148 150
|
addassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + -u ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
| 152 |
143 146 151
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) - ( ( 2 x. ( B x. C ) ) x. Y ) ) + ( C ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
| 153 |
127 142 152
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
| 154 |
93
|
subidd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = 0 ) |
| 155 |
153 154
|
eqeq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( ( C ^ 2 ) - ( 2 x. ( C x. ( B x. Y ) ) ) ) + ( ( B x. Y ) ^ 2 ) ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) <-> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 156 |
78 94 155
|
3bitr2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( C - ( B x. Y ) ) ^ 2 ) + ( ( A ^ 2 ) x. ( Y ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( R ^ 2 ) ) <-> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 157 |
63 74 156
|
3bitr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 158 |
1
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
| 159 |
121 119 158
|
comraddd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Q = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 160 |
159
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( Q x. ( Y ^ 2 ) ) = ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) ) |
| 161 |
2
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> T = -u ( 2 x. ( B x. C ) ) ) |
| 162 |
161
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( T x. Y ) = ( -u ( 2 x. ( B x. C ) ) x. Y ) ) |
| 163 |
134
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 164 |
163 102
|
mulneg1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( -u ( 2 x. ( B x. C ) ) x. Y ) = -u ( ( 2 x. ( B x. C ) ) x. Y ) ) |
| 165 |
162 164
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( T x. Y ) = -u ( ( 2 x. ( B x. C ) ) x. Y ) ) |
| 166 |
3
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 167 |
165 166
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( T x. Y ) + U ) = ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
| 168 |
160 167
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
| 169 |
168
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) ) |
| 170 |
169
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
| 171 |
170
|
biimpd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) + ( A ^ 2 ) ) x. ( Y ^ 2 ) ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
| 172 |
157 171
|
sylbid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( C - ( B x. Y ) ) / A ) ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
| 173 |
26 172
|
syl5 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ X = ( ( C - ( B x. Y ) ) / A ) ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |
| 174 |
22 173
|
sylbid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |