Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itscnhlc0yqe.t |
|- T = -u ( 2 x. ( B x. C ) ) |
3 |
|
itscnhlc0yqe.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
4 |
|
oveq2 |
|- ( C = ( B x. Y ) -> ( B x. C ) = ( B x. ( B x. Y ) ) ) |
5 |
4
|
oveq2d |
|- ( C = ( B x. Y ) -> ( 2 x. ( B x. C ) ) = ( 2 x. ( B x. ( B x. Y ) ) ) ) |
6 |
5
|
oveq1d |
|- ( C = ( B x. Y ) -> ( ( 2 x. ( B x. C ) ) x. Y ) = ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) |
7 |
6
|
negeqd |
|- ( C = ( B x. Y ) -> -u ( ( 2 x. ( B x. C ) ) x. Y ) = -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) |
8 |
|
oveq1 |
|- ( C = ( B x. Y ) -> ( C ^ 2 ) = ( ( B x. Y ) ^ 2 ) ) |
9 |
7 8
|
oveq12d |
|- ( C = ( B x. Y ) -> ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) = ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) |
10 |
9
|
oveq2d |
|- ( C = ( B x. Y ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) ) |
11 |
10
|
eqcoms |
|- ( ( B x. Y ) = C -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) ) |
12 |
|
simp12 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. RR ) |
13 |
12
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
14 |
|
simp3r |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. RR ) |
15 |
14
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
16 |
13 15
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. Y ) e. CC ) |
17 |
16
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) e. CC ) |
18 |
|
2cnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) |
19 |
13 16
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. ( B x. Y ) ) e. CC ) |
20 |
18 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. ( B x. Y ) ) ) e. CC ) |
21 |
20 15
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) e. CC ) |
22 |
21
|
negcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) e. CC ) |
23 |
|
add32r |
|- ( ( ( ( B x. Y ) ^ 2 ) e. CC /\ -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) e. CC /\ ( ( B x. Y ) ^ 2 ) e. CC ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) = ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) ) |
24 |
17 22 17 23
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) = ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) ) |
25 |
17 17
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) e. CC ) |
26 |
25 21
|
negsubd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) = ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) - ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) ) |
27 |
18 19 15
|
mulassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) = ( 2 x. ( ( B x. ( B x. Y ) ) x. Y ) ) ) |
28 |
13 16 15
|
mul32d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( B x. Y ) ) x. Y ) = ( ( B x. Y ) x. ( B x. Y ) ) ) |
29 |
16
|
sqvald |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) = ( ( B x. Y ) x. ( B x. Y ) ) ) |
30 |
28 29
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( B x. Y ) ) x. Y ) = ( ( B x. Y ) ^ 2 ) ) |
31 |
30
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. ( B x. Y ) ) x. Y ) ) = ( 2 x. ( ( B x. Y ) ^ 2 ) ) ) |
32 |
17
|
2timesd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. Y ) ^ 2 ) ) = ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) ) |
33 |
27 31 32
|
3eqtrrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) = ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) |
34 |
25 33
|
subeq0bd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) - ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) = 0 ) |
35 |
26 34
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) = 0 ) |
36 |
24 35
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) = 0 ) |
37 |
11 36
|
sylan9eqr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) /\ ( B x. Y ) = C ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = 0 ) |
38 |
37
|
ex |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) = C -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = 0 ) ) |
39 |
|
simp3l |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> X e. RR ) |
40 |
39
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
41 |
40
|
mul02d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 x. X ) = 0 ) |
42 |
41
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 x. X ) + ( B x. Y ) ) = ( 0 + ( B x. Y ) ) ) |
43 |
16
|
addid2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 + ( B x. Y ) ) = ( B x. Y ) ) |
44 |
42 43
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 x. X ) + ( B x. Y ) ) = ( B x. Y ) ) |
45 |
44
|
eqeq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C <-> ( B x. Y ) = C ) ) |
46 |
13
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. CC ) |
47 |
46
|
addid2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 + ( B ^ 2 ) ) = ( B ^ 2 ) ) |
48 |
47
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) = ( ( B ^ 2 ) x. ( Y ^ 2 ) ) ) |
49 |
13 15
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) = ( ( B ^ 2 ) x. ( Y ^ 2 ) ) ) |
50 |
48 49
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) = ( ( B x. Y ) ^ 2 ) ) |
51 |
|
simp13 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
52 |
51
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
53 |
13 52
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
54 |
18 53
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) |
55 |
54 15
|
mulneg1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( -u ( 2 x. ( B x. C ) ) x. Y ) = -u ( ( 2 x. ( B x. C ) ) x. Y ) ) |
56 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
57 |
56
|
sqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
58 |
57
|
mul02d |
|- ( R e. RR+ -> ( 0 x. ( R ^ 2 ) ) = 0 ) |
59 |
58
|
oveq2d |
|- ( R e. RR+ -> ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - 0 ) ) |
60 |
59
|
3ad2ant2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - 0 ) ) |
61 |
52
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) |
62 |
61
|
subid1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - 0 ) = ( C ^ 2 ) ) |
63 |
60 62
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) = ( C ^ 2 ) ) |
64 |
55 63
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) = ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) |
65 |
50 64
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) ) |
66 |
65
|
eqeq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = 0 ) ) |
67 |
38 45 66
|
3imtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
68 |
67
|
3exp |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( R e. RR+ -> ( ( X e. RR /\ Y e. RR ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) ) |
69 |
68
|
3adant1r |
|- ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) -> ( R e. RR+ -> ( ( X e. RR /\ Y e. RR ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) ) |
70 |
69
|
3imp |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
71 |
70
|
adantld |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
72 |
|
oveq1 |
|- ( A = 0 -> ( A x. X ) = ( 0 x. X ) ) |
73 |
72
|
oveq1d |
|- ( A = 0 -> ( ( A x. X ) + ( B x. Y ) ) = ( ( 0 x. X ) + ( B x. Y ) ) ) |
74 |
73
|
eqeq1d |
|- ( A = 0 -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( 0 x. X ) + ( B x. Y ) ) = C ) ) |
75 |
74
|
anbi2d |
|- ( A = 0 -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) ) ) |
76 |
|
sq0i |
|- ( A = 0 -> ( A ^ 2 ) = 0 ) |
77 |
76
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 0 + ( B ^ 2 ) ) ) |
78 |
1 77
|
syl5eq |
|- ( A = 0 -> Q = ( 0 + ( B ^ 2 ) ) ) |
79 |
78
|
oveq1d |
|- ( A = 0 -> ( Q x. ( Y ^ 2 ) ) = ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) ) |
80 |
2
|
oveq1i |
|- ( T x. Y ) = ( -u ( 2 x. ( B x. C ) ) x. Y ) |
81 |
80
|
a1i |
|- ( A = 0 -> ( T x. Y ) = ( -u ( 2 x. ( B x. C ) ) x. Y ) ) |
82 |
76
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) = ( 0 x. ( R ^ 2 ) ) ) |
83 |
82
|
oveq2d |
|- ( A = 0 -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) |
84 |
3 83
|
syl5eq |
|- ( A = 0 -> U = ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) |
85 |
81 84
|
oveq12d |
|- ( A = 0 -> ( ( T x. Y ) + U ) = ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) |
86 |
79 85
|
oveq12d |
|- ( A = 0 -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) ) |
87 |
86
|
eqeq1d |
|- ( A = 0 -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 <-> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
88 |
75 87
|
imbi12d |
|- ( A = 0 -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
89 |
88
|
adantl |
|- ( ( A e. RR /\ A = 0 ) -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
90 |
89
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
91 |
90
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
92 |
71 91
|
mpbird |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |