Metamath Proof Explorer


Theorem itsclc0xyqsolb

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 2-May-2023) (Revised by AV, 14-May-2023)

Ref Expression
Hypotheses itsclc0xyqsolr.q Q=A2+B2
itsclc0xyqsolr.d D=R2QC2
Assertion itsclc0xyqsolb ABCA0B0R+0DXYX2+Y2=R2AX+BY=CX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ

Proof

Step Hyp Ref Expression
1 itsclc0xyqsolr.q Q=A2+B2
2 itsclc0xyqsolr.d D=R2QC2
3 1 2 itsclc0xyqsol ABCA0B0R+0DXYX2+Y2=R2AX+BY=CX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ
4 3 3expb ABCA0B0R+0DXYX2+Y2=R2AX+BY=CX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ
5 simpl ABCA0B0ABC
6 simpr ABCA0B0A0B0
7 simpl R+0DXYR+0D
8 1 2 itsclc0xyqsolr ABCA0B0R+0DX=AC+BDQY=BCADQX=ACBDQY=BC+ADQX2+Y2=R2AX+BY=C
9 5 6 7 8 syl2an3an ABCA0B0R+0DXYX=AC+BDQY=BCADQX=ACBDQY=BC+ADQX2+Y2=R2AX+BY=C
10 4 9 impbid ABCA0B0R+0DXYX2+Y2=R2AX+BY=CX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ