Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html . As it is verified by the Metamath program, iunconnALT verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html . (Contributed by Alan Sare, 22-Apr-2018) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iunconnALT.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
iunconnALT.2 | |- ( ( ph /\ k e. A ) -> B C_ X ) |
||
iunconnALT.3 | |- ( ( ph /\ k e. A ) -> P e. B ) |
||
iunconnALT.4 | |- ( ( ph /\ k e. A ) -> ( J |`t B ) e. Conn ) |
||
Assertion | iunconnALT | |- ( ph -> ( J |`t U_ k e. A B ) e. Conn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunconnALT.1 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
2 | iunconnALT.2 | |- ( ( ph /\ k e. A ) -> B C_ X ) |
|
3 | iunconnALT.3 | |- ( ( ph /\ k e. A ) -> P e. B ) |
|
4 | iunconnALT.4 | |- ( ( ph /\ k e. A ) -> ( J |`t B ) e. Conn ) |
|
5 | biid | |- ( ( ( ( ( ( ( ph /\ u e. J ) /\ v e. J ) /\ ( u i^i U_ k e. A B ) =/= (/) ) /\ ( v i^i U_ k e. A B ) =/= (/) ) /\ ( u i^i v ) C_ ( X \ U_ k e. A B ) ) /\ U_ k e. A B C_ ( u u. v ) ) <-> ( ( ( ( ( ( ph /\ u e. J ) /\ v e. J ) /\ ( u i^i U_ k e. A B ) =/= (/) ) /\ ( v i^i U_ k e. A B ) =/= (/) ) /\ ( u i^i v ) C_ ( X \ U_ k e. A B ) ) /\ U_ k e. A B C_ ( u u. v ) ) ) |
|
6 | 5 1 2 3 4 | iunconnlem2 | |- ( ph -> ( J |`t U_ k e. A B ) e. Conn ) |