Step |
Hyp |
Ref |
Expression |
1 |
|
pire |
|- _pi e. RR |
2 |
|
pipos |
|- 0 < _pi |
3 |
1 2
|
elrpii |
|- _pi e. RR+ |
4 |
|
2ne0 |
|- 2 =/= 0 |
5 |
4
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 2 =/= 0 ) |
6 |
|
2cn |
|- 2 e. CC |
7 |
|
2re |
|- 2 e. RR |
8 |
7
|
a1i |
|- ( 2 e. CC -> 2 e. RR ) |
9 |
6 8
|
ax-mp |
|- 2 e. RR |
10 |
9
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 2 e. RR ) |
11 |
|
id |
|- ( A e. CC -> A e. CC ) |
12 |
11
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> A e. CC ) |
13 |
6
|
a1i |
|- ( A e. CC -> 2 e. CC ) |
14 |
13 11
|
mulcld |
|- ( A e. CC -> ( 2 x. A ) e. CC ) |
15 |
|
ax-icn |
|- _i e. CC |
16 |
15
|
a1i |
|- ( A e. CC -> _i e. CC ) |
17 |
13 16 11
|
mul12d |
|- ( A e. CC -> ( 2 x. ( _i x. A ) ) = ( _i x. ( 2 x. A ) ) ) |
18 |
16 11
|
mulcld |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
19 |
18
|
2timesd |
|- ( A e. CC -> ( 2 x. ( _i x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
20 |
17 19
|
eqtr3d |
|- ( A e. CC -> ( _i x. ( 2 x. A ) ) = ( ( _i x. A ) + ( _i x. A ) ) ) |
21 |
20
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. ( 2 x. A ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) ) |
22 |
|
efadd |
|- ( ( ( _i x. A ) e. CC /\ ( _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
23 |
18 18 22
|
syl2anc |
|- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
24 |
21 23
|
eqtrd |
|- ( A e. CC -> ( exp ` ( _i x. ( 2 x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
25 |
24
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( exp ` ( _i x. ( 2 x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
26 |
|
sinval |
|- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
27 |
|
id |
|- ( ( sin ` A ) = 0 -> ( sin ` A ) = 0 ) |
28 |
26 27
|
sylan9req |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 ) |
29 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
30 |
18 29
|
syl |
|- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
31 |
|
negicn |
|- -u _i e. CC |
32 |
31
|
a1i |
|- ( A e. CC -> -u _i e. CC ) |
33 |
32 11
|
mulcld |
|- ( A e. CC -> ( -u _i x. A ) e. CC ) |
34 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
35 |
33 34
|
syl |
|- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
36 |
30 35
|
subcld |
|- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
37 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
38 |
37
|
a1i |
|- ( A e. CC -> ( 2 x. _i ) e. CC ) |
39 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
40 |
39
|
a1i |
|- ( A e. CC -> ( 2 x. _i ) =/= 0 ) |
41 |
36 38 40
|
diveq0ad |
|- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) |
42 |
41
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) ) |
43 |
28 42
|
mpbid |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 ) |
44 |
30 35
|
subeq0ad |
|- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 <-> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) ) |
45 |
44
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = 0 <-> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) ) |
46 |
43 45
|
mpbid |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( exp ` ( _i x. A ) ) = ( exp ` ( -u _i x. A ) ) ) |
47 |
46
|
oveq2d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
48 |
|
efadd |
|- ( ( ( _i x. A ) e. CC /\ ( -u _i x. A ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
49 |
18 33 48
|
syl2anc |
|- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
50 |
49
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
51 |
47 50
|
eqtr4d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) ) |
52 |
16 32 11
|
adddird |
|- ( A e. CC -> ( ( _i + -u _i ) x. A ) = ( ( _i x. A ) + ( -u _i x. A ) ) ) |
53 |
15
|
negidi |
|- ( _i + -u _i ) = 0 |
54 |
53
|
oveq1i |
|- ( ( _i + -u _i ) x. A ) = ( 0 x. A ) |
55 |
52 54
|
eqtr3di |
|- ( A e. CC -> ( ( _i x. A ) + ( -u _i x. A ) ) = ( 0 x. A ) ) |
56 |
11
|
mul02d |
|- ( A e. CC -> ( 0 x. A ) = 0 ) |
57 |
55 56
|
eqtrd |
|- ( A e. CC -> ( ( _i x. A ) + ( -u _i x. A ) ) = 0 ) |
58 |
57
|
fveq2d |
|- ( A e. CC -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( exp ` 0 ) ) |
59 |
58
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( exp ` ( ( _i x. A ) + ( -u _i x. A ) ) ) = ( exp ` 0 ) ) |
60 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
61 |
60
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( exp ` 0 ) = 1 ) |
62 |
51 59 61
|
3eqtrd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) = 1 ) |
63 |
25 62
|
eqtrd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( exp ` ( _i x. ( 2 x. A ) ) ) = 1 ) |
64 |
63
|
fveq2d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = ( abs ` 1 ) ) |
65 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
66 |
64 65
|
eqtrdi |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) |
67 |
|
absefib |
|- ( ( 2 x. A ) e. CC -> ( ( 2 x. A ) e. RR <-> ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) ) |
68 |
67
|
biimparc |
|- ( ( ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 /\ ( 2 x. A ) e. CC ) -> ( 2 x. A ) e. RR ) |
69 |
68
|
ancoms |
|- ( ( ( 2 x. A ) e. CC /\ ( abs ` ( exp ` ( _i x. ( 2 x. A ) ) ) ) = 1 ) -> ( 2 x. A ) e. RR ) |
70 |
14 66 69
|
syl2an2r |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 2 x. A ) e. RR ) |
71 |
|
mulre |
|- ( ( A e. CC /\ 2 e. RR /\ 2 =/= 0 ) -> ( A e. RR <-> ( 2 x. A ) e. RR ) ) |
72 |
71
|
4animp1 |
|- ( ( ( ( A e. CC /\ 2 e. RR ) /\ 2 =/= 0 ) /\ ( 2 x. A ) e. RR ) -> A e. RR ) |
73 |
72
|
4an31 |
|- ( ( ( ( 2 =/= 0 /\ 2 e. RR ) /\ A e. CC ) /\ ( 2 x. A ) e. RR ) -> A e. RR ) |
74 |
5 10 12 70 73
|
syl1111anc |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> A e. RR ) |
75 |
3
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> _pi e. RR+ ) |
76 |
74 75
|
modcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) e. RR ) |
77 |
76
|
recnd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) e. CC ) |
78 |
77
|
sincld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` ( A mod _pi ) ) e. CC ) |
79 |
1
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> _pi e. RR ) |
80 |
|
0re |
|- 0 e. RR |
81 |
80 1 2
|
ltleii |
|- 0 <_ _pi |
82 |
|
gt0ne0 |
|- ( ( _pi e. RR /\ 0 < _pi ) -> _pi =/= 0 ) |
83 |
82
|
3adant3 |
|- ( ( _pi e. RR /\ 0 < _pi /\ 0 <_ _pi ) -> _pi =/= 0 ) |
84 |
83
|
3com23 |
|- ( ( _pi e. RR /\ 0 <_ _pi /\ 0 < _pi ) -> _pi =/= 0 ) |
85 |
1 81 2 84
|
mp3an |
|- _pi =/= 0 |
86 |
85
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> _pi =/= 0 ) |
87 |
74 79 86
|
redivcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A / _pi ) e. RR ) |
88 |
87
|
flcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( |_ ` ( A / _pi ) ) e. ZZ ) |
89 |
88
|
znegcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( |_ ` ( A / _pi ) ) e. ZZ ) |
90 |
|
abssinper |
|- ( ( A e. CC /\ -u ( |_ ` ( A / _pi ) ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
91 |
90
|
eqcomd |
|- ( ( A e. CC /\ -u ( |_ ` ( A / _pi ) ) e. ZZ ) -> ( abs ` ( sin ` A ) ) = ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) ) |
92 |
91
|
ex |
|- ( A e. CC -> ( -u ( |_ ` ( A / _pi ) ) e. ZZ -> ( abs ` ( sin ` A ) ) = ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) ) ) |
93 |
92
|
adantr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -u ( |_ ` ( A / _pi ) ) e. ZZ -> ( abs ` ( sin ` A ) ) = ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) ) ) |
94 |
89 93
|
mpd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` A ) ) = ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) ) |
95 |
88
|
zcnd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( |_ ` ( A / _pi ) ) e. CC ) |
96 |
95
|
negcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( |_ ` ( A / _pi ) ) e. CC ) |
97 |
1
|
recni |
|- _pi e. CC |
98 |
97
|
a1i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> _pi e. CC ) |
99 |
96 98
|
mulcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) e. CC ) |
100 |
98 95
|
mulcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) |
101 |
100
|
negcld |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) |
102 |
95 98
|
mulneg1d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( ( |_ ` ( A / _pi ) ) x. _pi ) ) |
103 |
95 98
|
mulcomd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( |_ ` ( A / _pi ) ) x. _pi ) = ( _pi x. ( |_ ` ( A / _pi ) ) ) ) |
104 |
103
|
negeqd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -u ( ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) |
105 |
102 104
|
eqtrd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) |
106 |
|
oveq2 |
|- ( ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( _pi x. ( |_ ` ( A / _pi ) ) ) -> ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) = ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
107 |
106
|
ad3antrrr |
|- ( ( ( ( ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( _pi x. ( |_ ` ( A / _pi ) ) ) /\ -u ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) /\ ( -u ( |_ ` ( A / _pi ) ) x. _pi ) e. CC ) /\ A e. CC ) -> ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) = ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
108 |
107
|
4an4132 |
|- ( ( ( ( A e. CC /\ ( -u ( |_ ` ( A / _pi ) ) x. _pi ) e. CC ) /\ -u ( _pi x. ( |_ ` ( A / _pi ) ) ) e. CC ) /\ ( -u ( |_ ` ( A / _pi ) ) x. _pi ) = -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) -> ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) = ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
109 |
12 99 101 105 108
|
syl1111anc |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) = ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
110 |
12 100
|
negsubd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + -u ( _pi x. ( |_ ` ( A / _pi ) ) ) ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
111 |
109 110
|
eqtrd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
112 |
111
|
fveq2d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) = ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) |
113 |
112
|
fveq2d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A + ( -u ( |_ ` ( A / _pi ) ) x. _pi ) ) ) ) = ( abs ` ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) ) |
114 |
94 113
|
eqtrd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` A ) ) = ( abs ` ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) ) |
115 |
|
modval |
|- ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) = ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) |
116 |
115
|
fveq2d |
|- ( ( A e. RR /\ _pi e. RR+ ) -> ( sin ` ( A mod _pi ) ) = ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) |
117 |
116
|
fveq2d |
|- ( ( A e. RR /\ _pi e. RR+ ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) ) |
118 |
3 117
|
mpan2 |
|- ( A e. RR -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) ) |
119 |
74 118
|
syl |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = ( abs ` ( sin ` ( A - ( _pi x. ( |_ ` ( A / _pi ) ) ) ) ) ) ) |
120 |
114 119
|
eqtr4d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` A ) ) = ( abs ` ( sin ` ( A mod _pi ) ) ) ) |
121 |
27
|
fveq2d |
|- ( ( sin ` A ) = 0 -> ( abs ` ( sin ` A ) ) = ( abs ` 0 ) ) |
122 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
123 |
121 122
|
eqtrdi |
|- ( ( sin ` A ) = 0 -> ( abs ` ( sin ` A ) ) = 0 ) |
124 |
123
|
adantl |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` A ) ) = 0 ) |
125 |
120 124
|
eqtr3d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( abs ` ( sin ` ( A mod _pi ) ) ) = 0 ) |
126 |
78 125
|
abs00d |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( sin ` ( A mod _pi ) ) = 0 ) |
127 |
|
notnotb |
|- ( ( sin ` ( A mod _pi ) ) = 0 <-> -. -. ( sin ` ( A mod _pi ) ) = 0 ) |
128 |
127
|
bicomi |
|- ( -. -. ( sin ` ( A mod _pi ) ) = 0 <-> ( sin ` ( A mod _pi ) ) = 0 ) |
129 |
|
ltne |
|- ( ( 0 e. RR /\ 0 < ( sin ` ( A mod _pi ) ) ) -> ( sin ` ( A mod _pi ) ) =/= 0 ) |
130 |
129
|
neneqd |
|- ( ( 0 e. RR /\ 0 < ( sin ` ( A mod _pi ) ) ) -> -. ( sin ` ( A mod _pi ) ) = 0 ) |
131 |
130
|
expcom |
|- ( 0 < ( sin ` ( A mod _pi ) ) -> ( 0 e. RR -> -. ( sin ` ( A mod _pi ) ) = 0 ) ) |
132 |
80 131
|
mpi |
|- ( 0 < ( sin ` ( A mod _pi ) ) -> -. ( sin ` ( A mod _pi ) ) = 0 ) |
133 |
132
|
con3i |
|- ( -. -. ( sin ` ( A mod _pi ) ) = 0 -> -. 0 < ( sin ` ( A mod _pi ) ) ) |
134 |
128 133
|
sylbir |
|- ( ( sin ` ( A mod _pi ) ) = 0 -> -. 0 < ( sin ` ( A mod _pi ) ) ) |
135 |
126 134
|
syl |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. 0 < ( sin ` ( A mod _pi ) ) ) |
136 |
|
sinq12gt0 |
|- ( ( A mod _pi ) e. ( 0 (,) _pi ) -> 0 < ( sin ` ( A mod _pi ) ) ) |
137 |
135 136
|
nsyl |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. ( A mod _pi ) e. ( 0 (,) _pi ) ) |
138 |
80
|
rexri |
|- 0 e. RR* |
139 |
1
|
rexri |
|- _pi e. RR* |
140 |
|
elioo2 |
|- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) ) |
141 |
138 139 140
|
mp2an |
|- ( ( A mod _pi ) e. ( 0 (,) _pi ) <-> ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) |
142 |
141
|
notbii |
|- ( -. ( A mod _pi ) e. ( 0 (,) _pi ) <-> -. ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) |
143 |
137 142
|
sylib |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) ) |
144 |
|
3anan12 |
|- ( ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) <-> ( 0 < ( A mod _pi ) /\ ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) ) |
145 |
144
|
notbii |
|- ( -. ( ( A mod _pi ) e. RR /\ 0 < ( A mod _pi ) /\ ( A mod _pi ) < _pi ) <-> -. ( 0 < ( A mod _pi ) /\ ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) ) |
146 |
143 145
|
sylib |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. ( 0 < ( A mod _pi ) /\ ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) ) |
147 |
|
modlt |
|- ( ( A e. RR /\ _pi e. RR+ ) -> ( A mod _pi ) < _pi ) |
148 |
147
|
ancoms |
|- ( ( _pi e. RR+ /\ A e. RR ) -> ( A mod _pi ) < _pi ) |
149 |
3 74 148
|
sylancr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) < _pi ) |
150 |
76 149
|
jca |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) |
151 |
|
not12an2impnot1 |
|- ( ( -. ( 0 < ( A mod _pi ) /\ ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) /\ ( ( A mod _pi ) e. RR /\ ( A mod _pi ) < _pi ) ) -> -. 0 < ( A mod _pi ) ) |
152 |
146 150 151
|
syl2anc |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> -. 0 < ( A mod _pi ) ) |
153 |
|
modge0 |
|- ( ( A e. RR /\ _pi e. RR+ ) -> 0 <_ ( A mod _pi ) ) |
154 |
153
|
ancoms |
|- ( ( _pi e. RR+ /\ A e. RR ) -> 0 <_ ( A mod _pi ) ) |
155 |
3 74 154
|
sylancr |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 0 <_ ( A mod _pi ) ) |
156 |
|
leloe |
|- ( ( 0 e. RR /\ ( A mod _pi ) e. RR ) -> ( 0 <_ ( A mod _pi ) <-> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) ) |
157 |
156
|
biimp3a |
|- ( ( 0 e. RR /\ ( A mod _pi ) e. RR /\ 0 <_ ( A mod _pi ) ) -> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) |
158 |
157
|
idiALT |
|- ( ( 0 e. RR /\ ( A mod _pi ) e. RR /\ 0 <_ ( A mod _pi ) ) -> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) |
159 |
80 76 155 158
|
mp3an2i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) |
160 |
|
pm2.53 |
|- ( ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) -> ( -. 0 < ( A mod _pi ) -> 0 = ( A mod _pi ) ) ) |
161 |
160
|
imp |
|- ( ( ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) /\ -. 0 < ( A mod _pi ) ) -> 0 = ( A mod _pi ) ) |
162 |
161
|
ancoms |
|- ( ( -. 0 < ( A mod _pi ) /\ ( 0 < ( A mod _pi ) \/ 0 = ( A mod _pi ) ) ) -> 0 = ( A mod _pi ) ) |
163 |
152 159 162
|
syl2anc |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> 0 = ( A mod _pi ) ) |
164 |
163
|
eqcomd |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A mod _pi ) = 0 ) |
165 |
|
mod0 |
|- ( ( A e. RR /\ _pi e. RR+ ) -> ( ( A mod _pi ) = 0 <-> ( A / _pi ) e. ZZ ) ) |
166 |
165
|
biimp3a |
|- ( ( A e. RR /\ _pi e. RR+ /\ ( A mod _pi ) = 0 ) -> ( A / _pi ) e. ZZ ) |
167 |
166
|
3com12 |
|- ( ( _pi e. RR+ /\ A e. RR /\ ( A mod _pi ) = 0 ) -> ( A / _pi ) e. ZZ ) |
168 |
3 74 164 167
|
mp3an2i |
|- ( ( A e. CC /\ ( sin ` A ) = 0 ) -> ( A / _pi ) e. ZZ ) |
169 |
168
|
ex |
|- ( A e. CC -> ( ( sin ` A ) = 0 -> ( A / _pi ) e. ZZ ) ) |
170 |
97
|
a1i |
|- ( A e. CC -> _pi e. CC ) |
171 |
85
|
a1i |
|- ( A e. CC -> _pi =/= 0 ) |
172 |
11 170 171
|
divcan1d |
|- ( A e. CC -> ( ( A / _pi ) x. _pi ) = A ) |
173 |
172
|
fveq2d |
|- ( A e. CC -> ( sin ` ( ( A / _pi ) x. _pi ) ) = ( sin ` A ) ) |
174 |
|
id |
|- ( ( A / _pi ) e. ZZ -> ( A / _pi ) e. ZZ ) |
175 |
|
sinkpi |
|- ( ( A / _pi ) e. ZZ -> ( sin ` ( ( A / _pi ) x. _pi ) ) = 0 ) |
176 |
174 175
|
syl |
|- ( ( A / _pi ) e. ZZ -> ( sin ` ( ( A / _pi ) x. _pi ) ) = 0 ) |
177 |
173 176
|
sylan9req |
|- ( ( A e. CC /\ ( A / _pi ) e. ZZ ) -> ( sin ` A ) = 0 ) |
178 |
177
|
ex |
|- ( A e. CC -> ( ( A / _pi ) e. ZZ -> ( sin ` A ) = 0 ) ) |
179 |
169 178
|
impbid |
|- ( A e. CC -> ( ( sin ` A ) = 0 <-> ( A / _pi ) e. ZZ ) ) |