| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fldivle |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) <_ ( A / B ) ) | 
						
							| 2 |  | refldivcl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) | 
						
							| 3 |  | simpl |  |-  ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) | 
						
							| 4 |  | rpregt0 |  |-  ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) | 
						
							| 6 |  | lemuldiv2 |  |-  ( ( ( |_ ` ( A / B ) ) e. RR /\ A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. ( |_ ` ( A / B ) ) ) <_ A <-> ( |_ ` ( A / B ) ) <_ ( A / B ) ) ) | 
						
							| 7 | 2 3 5 6 | syl3anc |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( |_ ` ( A / B ) ) ) <_ A <-> ( |_ ` ( A / B ) ) <_ ( A / B ) ) ) | 
						
							| 8 | 1 7 | mpbird |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) <_ A ) | 
						
							| 9 |  | rpre |  |-  ( B e. RR+ -> B e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) | 
						
							| 11 | 10 2 | remulcld |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. RR ) | 
						
							| 12 |  | subge0 |  |-  ( ( A e. RR /\ ( B x. ( |_ ` ( A / B ) ) ) e. RR ) -> ( 0 <_ ( A - ( B x. ( |_ ` ( A / B ) ) ) ) <-> ( B x. ( |_ ` ( A / B ) ) ) <_ A ) ) | 
						
							| 13 | 11 12 | syldan |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( 0 <_ ( A - ( B x. ( |_ ` ( A / B ) ) ) ) <-> ( B x. ( |_ ` ( A / B ) ) ) <_ A ) ) | 
						
							| 14 | 8 13 | mpbird |  |-  ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 15 |  | modval |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 16 | 14 15 | breqtrrd |  |-  ( ( A e. RR /\ B e. RR+ ) -> 0 <_ ( A mod B ) ) |