| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|- 0 e. RR* |
| 2 |
|
pire |
|- _pi e. RR |
| 3 |
2
|
rexri |
|- _pi e. RR* |
| 4 |
|
elioo2 |
|- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) ) |
| 5 |
1 3 4
|
mp2an |
|- ( A e. ( 0 (,) _pi ) <-> ( A e. RR /\ 0 < A /\ A < _pi ) ) |
| 6 |
|
rehalfcl |
|- ( A e. RR -> ( A / 2 ) e. RR ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( A / 2 ) e. RR ) |
| 8 |
|
halfpos2 |
|- ( A e. RR -> ( 0 < A <-> 0 < ( A / 2 ) ) ) |
| 9 |
8
|
biimpa |
|- ( ( A e. RR /\ 0 < A ) -> 0 < ( A / 2 ) ) |
| 10 |
9
|
3adant3 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( A / 2 ) ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
|
2pos |
|- 0 < 2 |
| 13 |
11 12
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 14 |
|
ltdiv1 |
|- ( ( A e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) |
| 15 |
2 13 14
|
mp3an23 |
|- ( A e. RR -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) |
| 16 |
15
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> ( A < _pi <-> ( A / 2 ) < ( _pi / 2 ) ) ) |
| 17 |
16
|
biimp3a |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( A / 2 ) < ( _pi / 2 ) ) |
| 18 |
|
sincosq1lem |
|- ( ( ( A / 2 ) e. RR /\ 0 < ( A / 2 ) /\ ( A / 2 ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( A / 2 ) ) ) |
| 19 |
7 10 17 18
|
syl3anc |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` ( A / 2 ) ) ) |
| 20 |
|
resubcl |
|- ( ( _pi e. RR /\ A e. RR ) -> ( _pi - A ) e. RR ) |
| 21 |
2 20
|
mpan |
|- ( A e. RR -> ( _pi - A ) e. RR ) |
| 22 |
|
rehalfcl |
|- ( ( _pi - A ) e. RR -> ( ( _pi - A ) / 2 ) e. RR ) |
| 23 |
21 22
|
syl |
|- ( A e. RR -> ( ( _pi - A ) / 2 ) e. RR ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( _pi - A ) / 2 ) e. RR ) |
| 25 |
|
posdif |
|- ( ( A e. RR /\ _pi e. RR ) -> ( A < _pi <-> 0 < ( _pi - A ) ) ) |
| 26 |
2 25
|
mpan2 |
|- ( A e. RR -> ( A < _pi <-> 0 < ( _pi - A ) ) ) |
| 27 |
|
halfpos2 |
|- ( ( _pi - A ) e. RR -> ( 0 < ( _pi - A ) <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 28 |
21 27
|
syl |
|- ( A e. RR -> ( 0 < ( _pi - A ) <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 29 |
26 28
|
bitrd |
|- ( A e. RR -> ( A < _pi <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 30 |
29
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> ( A < _pi <-> 0 < ( ( _pi - A ) / 2 ) ) ) |
| 31 |
30
|
biimp3a |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( ( _pi - A ) / 2 ) ) |
| 32 |
|
ltsubpos |
|- ( ( A e. RR /\ _pi e. RR ) -> ( 0 < A <-> ( _pi - A ) < _pi ) ) |
| 33 |
2 32
|
mpan2 |
|- ( A e. RR -> ( 0 < A <-> ( _pi - A ) < _pi ) ) |
| 34 |
|
ltdiv1 |
|- ( ( ( _pi - A ) e. RR /\ _pi e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 35 |
2 13 34
|
mp3an23 |
|- ( ( _pi - A ) e. RR -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 36 |
21 35
|
syl |
|- ( A e. RR -> ( ( _pi - A ) < _pi <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 37 |
33 36
|
bitrd |
|- ( A e. RR -> ( 0 < A <-> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) ) |
| 38 |
37
|
biimpa |
|- ( ( A e. RR /\ 0 < A ) -> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) |
| 39 |
38
|
3adant3 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) |
| 40 |
|
sincosq1lem |
|- ( ( ( ( _pi - A ) / 2 ) e. RR /\ 0 < ( ( _pi - A ) / 2 ) /\ ( ( _pi - A ) / 2 ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi - A ) / 2 ) ) ) |
| 41 |
24 31 39 40
|
syl3anc |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` ( ( _pi - A ) / 2 ) ) ) |
| 42 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 43 |
|
picn |
|- _pi e. CC |
| 44 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 45 |
|
divsubdir |
|- ( ( _pi e. CC /\ A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) |
| 46 |
43 44 45
|
mp3an13 |
|- ( A e. CC -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) |
| 47 |
42 46
|
syl |
|- ( A e. RR -> ( ( _pi - A ) / 2 ) = ( ( _pi / 2 ) - ( A / 2 ) ) ) |
| 48 |
47
|
fveq2d |
|- ( A e. RR -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) ) |
| 49 |
6
|
recnd |
|- ( A e. RR -> ( A / 2 ) e. CC ) |
| 50 |
|
sinhalfpim |
|- ( ( A / 2 ) e. CC -> ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) = ( cos ` ( A / 2 ) ) ) |
| 51 |
49 50
|
syl |
|- ( A e. RR -> ( sin ` ( ( _pi / 2 ) - ( A / 2 ) ) ) = ( cos ` ( A / 2 ) ) ) |
| 52 |
48 51
|
eqtrd |
|- ( A e. RR -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( cos ` ( A / 2 ) ) ) |
| 53 |
52
|
3ad2ant1 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( sin ` ( ( _pi - A ) / 2 ) ) = ( cos ` ( A / 2 ) ) ) |
| 54 |
41 53
|
breqtrd |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( cos ` ( A / 2 ) ) ) |
| 55 |
|
resincl |
|- ( ( A / 2 ) e. RR -> ( sin ` ( A / 2 ) ) e. RR ) |
| 56 |
|
recoscl |
|- ( ( A / 2 ) e. RR -> ( cos ` ( A / 2 ) ) e. RR ) |
| 57 |
55 56
|
jca |
|- ( ( A / 2 ) e. RR -> ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) ) |
| 58 |
|
axmulgt0 |
|- ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 59 |
6 57 58
|
3syl |
|- ( A e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 60 |
|
remulcl |
|- ( ( ( sin ` ( A / 2 ) ) e. RR /\ ( cos ` ( A / 2 ) ) e. RR ) -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
| 61 |
6 57 60
|
3syl |
|- ( A e. RR -> ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) |
| 62 |
|
axmulgt0 |
|- ( ( 2 e. RR /\ ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) e. RR ) -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 63 |
11 61 62
|
sylancr |
|- ( A e. RR -> ( ( 0 < 2 /\ 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 64 |
12 63
|
mpani |
|- ( A e. RR -> ( 0 < ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 65 |
59 64
|
syld |
|- ( A e. RR -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 66 |
65
|
3ad2ant1 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( ( 0 < ( sin ` ( A / 2 ) ) /\ 0 < ( cos ` ( A / 2 ) ) ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) ) |
| 67 |
19 54 66
|
mp2and |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 68 |
|
2cn |
|- 2 e. CC |
| 69 |
|
2ne0 |
|- 2 =/= 0 |
| 70 |
|
divcan2 |
|- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( A / 2 ) ) = A ) |
| 71 |
68 69 70
|
mp3an23 |
|- ( A e. CC -> ( 2 x. ( A / 2 ) ) = A ) |
| 72 |
42 71
|
syl |
|- ( A e. RR -> ( 2 x. ( A / 2 ) ) = A ) |
| 73 |
72
|
fveq2d |
|- ( A e. RR -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( sin ` A ) ) |
| 74 |
|
sin2t |
|- ( ( A / 2 ) e. CC -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 75 |
49 74
|
syl |
|- ( A e. RR -> ( sin ` ( 2 x. ( A / 2 ) ) ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 76 |
73 75
|
eqtr3d |
|- ( A e. RR -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 77 |
76
|
3ad2ant1 |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> ( sin ` A ) = ( 2 x. ( ( sin ` ( A / 2 ) ) x. ( cos ` ( A / 2 ) ) ) ) ) |
| 78 |
67 77
|
breqtrrd |
|- ( ( A e. RR /\ 0 < A /\ A < _pi ) -> 0 < ( sin ` A ) ) |
| 79 |
5 78
|
sylbi |
|- ( A e. ( 0 (,) _pi ) -> 0 < ( sin ` A ) ) |