Metamath Proof Explorer


Theorem sinq12gt0

Description: The sine of a number strictly between 0 and _pi is positive. (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion sinq12gt0 A0π0<sinA

Proof

Step Hyp Ref Expression
1 0xr 0*
2 pire π
3 2 rexri π*
4 elioo2 0*π*A0πA0<AA<π
5 1 3 4 mp2an A0πA0<AA<π
6 rehalfcl AA2
7 6 3ad2ant1 A0<AA<πA2
8 halfpos2 A0<A0<A2
9 8 biimpa A0<A0<A2
10 9 3adant3 A0<AA<π0<A2
11 2re 2
12 2pos 0<2
13 11 12 pm3.2i 20<2
14 ltdiv1 Aπ20<2A<πA2<π2
15 2 13 14 mp3an23 AA<πA2<π2
16 15 adantr A0<AA<πA2<π2
17 16 biimp3a A0<AA<πA2<π2
18 sincosq1lem A20<A2A2<π20<sinA2
19 7 10 17 18 syl3anc A0<AA<π0<sinA2
20 resubcl πAπA
21 2 20 mpan AπA
22 rehalfcl πAπA2
23 21 22 syl AπA2
24 23 3ad2ant1 A0<AA<ππA2
25 posdif AπA<π0<πA
26 2 25 mpan2 AA<π0<πA
27 halfpos2 πA0<πA0<πA2
28 21 27 syl A0<πA0<πA2
29 26 28 bitrd AA<π0<πA2
30 29 adantr A0<AA<π0<πA2
31 30 biimp3a A0<AA<π0<πA2
32 ltsubpos Aπ0<AπA<π
33 2 32 mpan2 A0<AπA<π
34 ltdiv1 πAπ20<2πA<ππA2<π2
35 2 13 34 mp3an23 πAπA<ππA2<π2
36 21 35 syl AπA<ππA2<π2
37 33 36 bitrd A0<AπA2<π2
38 37 biimpa A0<AπA2<π2
39 38 3adant3 A0<AA<ππA2<π2
40 sincosq1lem πA20<πA2πA2<π20<sinπA2
41 24 31 39 40 syl3anc A0<AA<π0<sinπA2
42 recn AA
43 picn π
44 2cnne0 220
45 divsubdir πA220πA2=π2A2
46 43 44 45 mp3an13 AπA2=π2A2
47 42 46 syl AπA2=π2A2
48 47 fveq2d AsinπA2=sinπ2A2
49 6 recnd AA2
50 sinhalfpim A2sinπ2A2=cosA2
51 49 50 syl Asinπ2A2=cosA2
52 48 51 eqtrd AsinπA2=cosA2
53 52 3ad2ant1 A0<AA<πsinπA2=cosA2
54 41 53 breqtrd A0<AA<π0<cosA2
55 resincl A2sinA2
56 recoscl A2cosA2
57 55 56 jca A2sinA2cosA2
58 axmulgt0 sinA2cosA20<sinA20<cosA20<sinA2cosA2
59 6 57 58 3syl A0<sinA20<cosA20<sinA2cosA2
60 remulcl sinA2cosA2sinA2cosA2
61 6 57 60 3syl AsinA2cosA2
62 axmulgt0 2sinA2cosA20<20<sinA2cosA20<2sinA2cosA2
63 11 61 62 sylancr A0<20<sinA2cosA20<2sinA2cosA2
64 12 63 mpani A0<sinA2cosA20<2sinA2cosA2
65 59 64 syld A0<sinA20<cosA20<2sinA2cosA2
66 65 3ad2ant1 A0<AA<π0<sinA20<cosA20<2sinA2cosA2
67 19 54 66 mp2and A0<AA<π0<2sinA2cosA2
68 2cn 2
69 2ne0 20
70 divcan2 A2202A2=A
71 68 69 70 mp3an23 A2A2=A
72 42 71 syl A2A2=A
73 72 fveq2d Asin2A2=sinA
74 sin2t A2sin2A2=2sinA2cosA2
75 49 74 syl Asin2A2=2sinA2cosA2
76 73 75 eqtr3d AsinA=2sinA2cosA2
77 76 3ad2ant1 A0<AA<πsinA=2sinA2cosA2
78 67 77 breqtrrd A0<AA<π0<sinA
79 5 78 sylbi A0π0<sinA