Metamath Proof Explorer


Theorem axmulgt0

Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axmulgt0 AB0<A0<B0<AB

Proof

Step Hyp Ref Expression
1 ax-pre-mulgt0 AB0<A0<B0<AB
2 0re 0
3 ltxrlt 0A0<A0<A
4 2 3 mpan A0<A0<A
5 ltxrlt 0B0<B0<B
6 2 5 mpan B0<B0<B
7 4 6 bi2anan9 AB0<A0<B0<A0<B
8 remulcl ABAB
9 ltxrlt 0AB0<AB0<AB
10 2 8 9 sylancr AB0<AB0<AB
11 1 7 10 3imtr4d AB0<A0<B0<AB