| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-pre-mulgt0 |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0  0  | 
						
							| 2 |  | 0re |  |-  0 e. RR | 
						
							| 3 |  | ltxrlt |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> 0  | 
						
							| 4 | 2 3 | mpan |  |-  ( A e. RR -> ( 0 < A <-> 0  | 
						
							| 5 |  | ltxrlt |  |-  ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> 0  | 
						
							| 6 | 2 5 | mpan |  |-  ( B e. RR -> ( 0 < B <-> 0  | 
						
							| 7 | 4 6 | bi2anan9 |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) <-> ( 0  | 
						
							| 8 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 9 |  | ltxrlt |  |-  ( ( 0 e. RR /\ ( A x. B ) e. RR ) -> ( 0 < ( A x. B ) <-> 0  | 
						
							| 10 | 2 8 9 | sylancr |  |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0  | 
						
							| 11 | 1 7 10 | 3imtr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) ) ) |