| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-pre-mulgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  <ℝ  𝐴  ∧  0  <ℝ  𝐵 )  →  0  <ℝ  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 2 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 3 |  | ltxrlt | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  ↔  0  <ℝ  𝐴 ) ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  ↔  0  <ℝ  𝐴 ) ) | 
						
							| 5 |  | ltxrlt | ⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  <  𝐵  ↔  0  <ℝ  𝐵 ) ) | 
						
							| 6 | 2 5 | mpan | ⊢ ( 𝐵  ∈  ℝ  →  ( 0  <  𝐵  ↔  0  <ℝ  𝐵 ) ) | 
						
							| 7 | 4 6 | bi2anan9 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  <  𝐴  ∧  0  <  𝐵 )  ↔  ( 0  <ℝ  𝐴  ∧  0  <ℝ  𝐵 ) ) ) | 
						
							| 8 |  | remulcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 9 |  | ltxrlt | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝐴  ·  𝐵 )  ∈  ℝ )  →  ( 0  <  ( 𝐴  ·  𝐵 )  ↔  0  <ℝ  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 10 | 2 8 9 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  <  ( 𝐴  ·  𝐵 )  ↔  0  <ℝ  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 11 | 1 7 10 | 3imtr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  <  𝐴  ∧  0  <  𝐵 )  →  0  <  ( 𝐴  ·  𝐵 ) ) ) |