Metamath Proof Explorer


Theorem sineq0ALT

Description: A complex number whose sine is zero is an integer multiple of _pi . The Virtual Deduction form of the proof is https://us.metamath.org/other/completeusersproof/sineq0altvd.html . The Metamath form of the proof is sineq0ALT . The Virtual Deduction proof is based on Mario Carneiro's revision of Norm Megill's proof of sineq0 . The Virtual Deduction proof is verified by automatically transforming it into the Metamath form of the proof using completeusersproof, which is verified by the Metamath program. The proof of https://us.metamath.org/other/completeusersproof/sineq0altro.html is a form of the completed proof which preserves the Virtual Deduction proof's step numbers and their ordering. (Contributed by Alan Sare, 13-Jun-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sineq0ALT A sin A = 0 A π

Proof

Step Hyp Ref Expression
1 pire π
2 pipos 0 < π
3 1 2 elrpii π +
4 2ne0 2 0
5 4 a1i A sin A = 0 2 0
6 2cn 2
7 2re 2
8 7 a1i 2 2
9 6 8 ax-mp 2
10 9 a1i A sin A = 0 2
11 id A A
12 11 adantr A sin A = 0 A
13 6 a1i A 2
14 13 11 mulcld A 2 A
15 ax-icn i
16 15 a1i A i
17 13 16 11 mul12d A 2 i A = i 2 A
18 16 11 mulcld A i A
19 18 2timesd A 2 i A = i A + i A
20 17 19 eqtr3d A i 2 A = i A + i A
21 20 fveq2d A e i 2 A = e i A + i A
22 efadd i A i A e i A + i A = e i A e i A
23 18 18 22 syl2anc A e i A + i A = e i A e i A
24 21 23 eqtrd A e i 2 A = e i A e i A
25 24 adantr A sin A = 0 e i 2 A = e i A e i A
26 sinval A sin A = e i A e i A 2 i
27 id sin A = 0 sin A = 0
28 26 27 sylan9req A sin A = 0 e i A e i A 2 i = 0
29 efcl i A e i A
30 18 29 syl A e i A
31 negicn i
32 31 a1i A i
33 32 11 mulcld A i A
34 efcl i A e i A
35 33 34 syl A e i A
36 30 35 subcld A e i A e i A
37 2mulicn 2 i
38 37 a1i A 2 i
39 2muline0 2 i 0
40 39 a1i A 2 i 0
41 36 38 40 diveq0ad A e i A e i A 2 i = 0 e i A e i A = 0
42 41 adantr A sin A = 0 e i A e i A 2 i = 0 e i A e i A = 0
43 28 42 mpbid A sin A = 0 e i A e i A = 0
44 30 35 subeq0ad A e i A e i A = 0 e i A = e i A
45 44 adantr A sin A = 0 e i A e i A = 0 e i A = e i A
46 43 45 mpbid A sin A = 0 e i A = e i A
47 46 oveq2d A sin A = 0 e i A e i A = e i A e i A
48 efadd i A i A e i A + i A = e i A e i A
49 18 33 48 syl2anc A e i A + i A = e i A e i A
50 49 adantr A sin A = 0 e i A + i A = e i A e i A
51 47 50 eqtr4d A sin A = 0 e i A e i A = e i A + i A
52 16 32 11 adddird A i + i A = i A + i A
53 15 negidi i + i = 0
54 53 oveq1i i + i A = 0 A
55 52 54 eqtr3di A i A + i A = 0 A
56 11 mul02d A 0 A = 0
57 55 56 eqtrd A i A + i A = 0
58 57 fveq2d A e i A + i A = e 0
59 58 adantr A sin A = 0 e i A + i A = e 0
60 ef0 e 0 = 1
61 60 a1i A sin A = 0 e 0 = 1
62 51 59 61 3eqtrd A sin A = 0 e i A e i A = 1
63 25 62 eqtrd A sin A = 0 e i 2 A = 1
64 63 fveq2d A sin A = 0 e i 2 A = 1
65 abs1 1 = 1
66 64 65 eqtrdi A sin A = 0 e i 2 A = 1
67 absefib 2 A 2 A e i 2 A = 1
68 67 biimparc e i 2 A = 1 2 A 2 A
69 68 ancoms 2 A e i 2 A = 1 2 A
70 14 66 69 syl2an2r A sin A = 0 2 A
71 mulre A 2 2 0 A 2 A
72 71 4animp1 A 2 2 0 2 A A
73 72 4an31 2 0 2 A 2 A A
74 5 10 12 70 73 syl1111anc A sin A = 0 A
75 3 a1i A sin A = 0 π +
76 74 75 modcld A sin A = 0 A mod π
77 76 recnd A sin A = 0 A mod π
78 77 sincld A sin A = 0 sin A mod π
79 1 a1i A sin A = 0 π
80 0re 0
81 80 1 2 ltleii 0 π
82 gt0ne0 π 0 < π π 0
83 82 3adant3 π 0 < π 0 π π 0
84 83 3com23 π 0 π 0 < π π 0
85 1 81 2 84 mp3an π 0
86 85 a1i A sin A = 0 π 0
87 74 79 86 redivcld A sin A = 0 A π
88 87 flcld A sin A = 0 A π
89 88 znegcld A sin A = 0 A π
90 abssinper A A π sin A + A π π = sin A
91 90 eqcomd A A π sin A = sin A + A π π
92 91 ex A A π sin A = sin A + A π π
93 92 adantr A sin A = 0 A π sin A = sin A + A π π
94 89 93 mpd A sin A = 0 sin A = sin A + A π π
95 88 zcnd A sin A = 0 A π
96 95 negcld A sin A = 0 A π
97 1 recni π
98 97 a1i A sin A = 0 π
99 96 98 mulcld A sin A = 0 A π π
100 98 95 mulcld A sin A = 0 π A π
101 100 negcld A sin A = 0 π A π
102 95 98 mulneg1d A sin A = 0 A π π = A π π
103 95 98 mulcomd A sin A = 0 A π π = π A π
104 103 negeqd A sin A = 0 A π π = π A π
105 102 104 eqtrd A sin A = 0 A π π = π A π
106 oveq2 A π π = π A π A + A π π = A + π A π
107 106 ad3antrrr A π π = π A π π A π A π π A A + A π π = A + π A π
108 107 4an4132 A A π π π A π A π π = π A π A + A π π = A + π A π
109 12 99 101 105 108 syl1111anc A sin A = 0 A + A π π = A + π A π
110 12 100 negsubd A sin A = 0 A + π A π = A π A π
111 109 110 eqtrd A sin A = 0 A + A π π = A π A π
112 111 fveq2d A sin A = 0 sin A + A π π = sin A π A π
113 112 fveq2d A sin A = 0 sin A + A π π = sin A π A π
114 94 113 eqtrd A sin A = 0 sin A = sin A π A π
115 modval A π + A mod π = A π A π
116 115 fveq2d A π + sin A mod π = sin A π A π
117 116 fveq2d A π + sin A mod π = sin A π A π
118 3 117 mpan2 A sin A mod π = sin A π A π
119 74 118 syl A sin A = 0 sin A mod π = sin A π A π
120 114 119 eqtr4d A sin A = 0 sin A = sin A mod π
121 27 fveq2d sin A = 0 sin A = 0
122 abs0 0 = 0
123 121 122 eqtrdi sin A = 0 sin A = 0
124 123 adantl A sin A = 0 sin A = 0
125 120 124 eqtr3d A sin A = 0 sin A mod π = 0
126 78 125 abs00d A sin A = 0 sin A mod π = 0
127 notnotb sin A mod π = 0 ¬ ¬ sin A mod π = 0
128 127 bicomi ¬ ¬ sin A mod π = 0 sin A mod π = 0
129 ltne 0 0 < sin A mod π sin A mod π 0
130 129 neneqd 0 0 < sin A mod π ¬ sin A mod π = 0
131 130 expcom 0 < sin A mod π 0 ¬ sin A mod π = 0
132 80 131 mpi 0 < sin A mod π ¬ sin A mod π = 0
133 132 con3i ¬ ¬ sin A mod π = 0 ¬ 0 < sin A mod π
134 128 133 sylbir sin A mod π = 0 ¬ 0 < sin A mod π
135 126 134 syl A sin A = 0 ¬ 0 < sin A mod π
136 sinq12gt0 A mod π 0 π 0 < sin A mod π
137 135 136 nsyl A sin A = 0 ¬ A mod π 0 π
138 80 rexri 0 *
139 1 rexri π *
140 elioo2 0 * π * A mod π 0 π A mod π 0 < A mod π A mod π < π
141 138 139 140 mp2an A mod π 0 π A mod π 0 < A mod π A mod π < π
142 141 notbii ¬ A mod π 0 π ¬ A mod π 0 < A mod π A mod π < π
143 137 142 sylib A sin A = 0 ¬ A mod π 0 < A mod π A mod π < π
144 3anan12 A mod π 0 < A mod π A mod π < π 0 < A mod π A mod π A mod π < π
145 144 notbii ¬ A mod π 0 < A mod π A mod π < π ¬ 0 < A mod π A mod π A mod π < π
146 143 145 sylib A sin A = 0 ¬ 0 < A mod π A mod π A mod π < π
147 modlt A π + A mod π < π
148 147 ancoms π + A A mod π < π
149 3 74 148 sylancr A sin A = 0 A mod π < π
150 76 149 jca A sin A = 0 A mod π A mod π < π
151 not12an2impnot1 ¬ 0 < A mod π A mod π A mod π < π A mod π A mod π < π ¬ 0 < A mod π
152 146 150 151 syl2anc A sin A = 0 ¬ 0 < A mod π
153 modge0 A π + 0 A mod π
154 153 ancoms π + A 0 A mod π
155 3 74 154 sylancr A sin A = 0 0 A mod π
156 leloe 0 A mod π 0 A mod π 0 < A mod π 0 = A mod π
157 156 biimp3a 0 A mod π 0 A mod π 0 < A mod π 0 = A mod π
158 157 idiALT 0 A mod π 0 A mod π 0 < A mod π 0 = A mod π
159 80 76 155 158 mp3an2i A sin A = 0 0 < A mod π 0 = A mod π
160 pm2.53 0 < A mod π 0 = A mod π ¬ 0 < A mod π 0 = A mod π
161 160 imp 0 < A mod π 0 = A mod π ¬ 0 < A mod π 0 = A mod π
162 161 ancoms ¬ 0 < A mod π 0 < A mod π 0 = A mod π 0 = A mod π
163 152 159 162 syl2anc A sin A = 0 0 = A mod π
164 163 eqcomd A sin A = 0 A mod π = 0
165 mod0 A π + A mod π = 0 A π
166 165 biimp3a A π + A mod π = 0 A π
167 166 3com12 π + A A mod π = 0 A π
168 3 74 164 167 mp3an2i A sin A = 0 A π
169 168 ex A sin A = 0 A π
170 97 a1i A π
171 85 a1i A π 0
172 11 170 171 divcan1d A A π π = A
173 172 fveq2d A sin A π π = sin A
174 id A π A π
175 sinkpi A π sin A π π = 0
176 174 175 syl A π sin A π π = 0
177 173 176 sylan9req A A π sin A = 0
178 177 ex A A π sin A = 0
179 169 178 impbid A sin A = 0 A π