| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
⊢ π ∈ ℝ |
| 2 |
|
pipos |
⊢ 0 < π |
| 3 |
1 2
|
elrpii |
⊢ π ∈ ℝ+ |
| 4 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 2 ≠ 0 ) |
| 6 |
|
2cn |
⊢ 2 ∈ ℂ |
| 7 |
|
2re |
⊢ 2 ∈ ℝ |
| 8 |
7
|
a1i |
⊢ ( 2 ∈ ℂ → 2 ∈ ℝ ) |
| 9 |
6 8
|
ax-mp |
⊢ 2 ∈ ℝ |
| 10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 2 ∈ ℝ ) |
| 11 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
| 13 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
| 14 |
13 11
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) ∈ ℂ ) |
| 15 |
|
ax-icn |
⊢ i ∈ ℂ |
| 16 |
15
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 17 |
13 16 11
|
mul12d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · 𝐴 ) ) = ( i · ( 2 · 𝐴 ) ) ) |
| 18 |
16 11
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 19 |
18
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 20 |
17 19
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( 2 · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) ) |
| 22 |
|
efadd |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 23 |
18 18 22
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 24 |
21 23
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 26 |
|
sinval |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) ) |
| 27 |
|
id |
⊢ ( ( sin ‘ 𝐴 ) = 0 → ( sin ‘ 𝐴 ) = 0 ) |
| 28 |
26 27
|
sylan9req |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ) |
| 29 |
|
efcl |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 30 |
18 29
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
| 31 |
|
negicn |
⊢ - i ∈ ℂ |
| 32 |
31
|
a1i |
⊢ ( 𝐴 ∈ ℂ → - i ∈ ℂ ) |
| 33 |
32 11
|
mulcld |
⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) ∈ ℂ ) |
| 34 |
|
efcl |
⊢ ( ( - i · 𝐴 ) ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
| 35 |
33 34
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) ∈ ℂ ) |
| 36 |
30 35
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) ∈ ℂ ) |
| 37 |
|
2mulicn |
⊢ ( 2 · i ) ∈ ℂ |
| 38 |
37
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 2 · i ) ∈ ℂ ) |
| 39 |
|
2muline0 |
⊢ ( 2 · i ) ≠ 0 |
| 40 |
39
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 2 · i ) ≠ 0 ) |
| 41 |
36 38 40
|
diveq0ad |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ) ) |
| 43 |
28 42
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ) |
| 44 |
30 35
|
subeq0ad |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ↔ ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( ( exp ‘ ( i · 𝐴 ) ) − ( exp ‘ ( - i · 𝐴 ) ) ) = 0 ↔ ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 46 |
43 45
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( exp ‘ ( i · 𝐴 ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
| 47 |
46
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 48 |
|
efadd |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( - i · 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 49 |
18 33 48
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐴 ) ) ) ) |
| 51 |
47 50
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) ) |
| 52 |
16 32 11
|
adddird |
⊢ ( 𝐴 ∈ ℂ → ( ( i + - i ) · 𝐴 ) = ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) |
| 53 |
15
|
negidi |
⊢ ( i + - i ) = 0 |
| 54 |
53
|
oveq1i |
⊢ ( ( i + - i ) · 𝐴 ) = ( 0 · 𝐴 ) |
| 55 |
52 54
|
eqtr3di |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) = ( 0 · 𝐴 ) ) |
| 56 |
11
|
mul02d |
⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |
| 57 |
55 56
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) = 0 ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( exp ‘ 0 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( exp ‘ ( ( i · 𝐴 ) + ( - i · 𝐴 ) ) ) = ( exp ‘ 0 ) ) |
| 60 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 61 |
60
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( exp ‘ 0 ) = 1 ) |
| 62 |
51 59 61
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) |
| 63 |
25 62
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) = 1 ) |
| 64 |
63
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = ( abs ‘ 1 ) ) |
| 65 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 66 |
64 65
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ) |
| 67 |
|
absefib |
⊢ ( ( 2 · 𝐴 ) ∈ ℂ → ( ( 2 · 𝐴 ) ∈ ℝ ↔ ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ) ) |
| 68 |
67
|
biimparc |
⊢ ( ( ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ∧ ( 2 · 𝐴 ) ∈ ℂ ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 69 |
68
|
ancoms |
⊢ ( ( ( 2 · 𝐴 ) ∈ ℂ ∧ ( abs ‘ ( exp ‘ ( i · ( 2 · 𝐴 ) ) ) ) = 1 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 70 |
14 66 69
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 71 |
|
mulre |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( 𝐴 ∈ ℝ ↔ ( 2 · 𝐴 ) ∈ ℝ ) ) |
| 72 |
71
|
4animp1 |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℝ ) ∧ 2 ≠ 0 ) ∧ ( 2 · 𝐴 ) ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 73 |
72
|
4an31 |
⊢ ( ( ( ( 2 ≠ 0 ∧ 2 ∈ ℝ ) ∧ 𝐴 ∈ ℂ ) ∧ ( 2 · 𝐴 ) ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 74 |
5 10 12 70 73
|
syl1111anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 75 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → π ∈ ℝ+ ) |
| 76 |
74 75
|
modcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) ∈ ℝ ) |
| 77 |
76
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) ∈ ℂ ) |
| 78 |
77
|
sincld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( sin ‘ ( 𝐴 mod π ) ) ∈ ℂ ) |
| 79 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → π ∈ ℝ ) |
| 80 |
|
0re |
⊢ 0 ∈ ℝ |
| 81 |
80 1 2
|
ltleii |
⊢ 0 ≤ π |
| 82 |
|
gt0ne0 |
⊢ ( ( π ∈ ℝ ∧ 0 < π ) → π ≠ 0 ) |
| 83 |
82
|
3adant3 |
⊢ ( ( π ∈ ℝ ∧ 0 < π ∧ 0 ≤ π ) → π ≠ 0 ) |
| 84 |
83
|
3com23 |
⊢ ( ( π ∈ ℝ ∧ 0 ≤ π ∧ 0 < π ) → π ≠ 0 ) |
| 85 |
1 81 2 84
|
mp3an |
⊢ π ≠ 0 |
| 86 |
85
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → π ≠ 0 ) |
| 87 |
74 79 86
|
redivcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 / π ) ∈ ℝ ) |
| 88 |
87
|
flcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) |
| 89 |
88
|
znegcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) |
| 90 |
|
abssinper |
⊢ ( ( 𝐴 ∈ ℂ ∧ - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) → ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) = ( abs ‘ ( sin ‘ 𝐴 ) ) ) |
| 91 |
90
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ ) → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) ) |
| 92 |
91
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) ) ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℤ → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) ) ) |
| 94 |
89 93
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) ) |
| 95 |
88
|
zcnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℂ ) |
| 96 |
95
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( ⌊ ‘ ( 𝐴 / π ) ) ∈ ℂ ) |
| 97 |
1
|
recni |
⊢ π ∈ ℂ |
| 98 |
97
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → π ∈ ℂ ) |
| 99 |
96 98
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ∈ ℂ ) |
| 100 |
98 95
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) |
| 101 |
100
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) |
| 102 |
95 98
|
mulneg1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) |
| 103 |
95 98
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) |
| 104 |
103
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → - ( ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) |
| 105 |
102 104
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) |
| 106 |
|
oveq2 |
⊢ ( ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) → ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) = ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 107 |
106
|
ad3antrrr |
⊢ ( ( ( ( ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∧ - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) ∧ ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ∈ ℂ ) ∧ 𝐴 ∈ ℂ ) → ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) = ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 108 |
107
|
4an4132 |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ∈ ℂ ) ∧ - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ∈ ℂ ) ∧ ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) = - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) → ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) = ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 109 |
12 99 101 105 108
|
syl1111anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) = ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 110 |
12 100
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 + - ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 111 |
109 110
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 112 |
111
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) = ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) |
| 113 |
112
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 + ( - ( ⌊ ‘ ( 𝐴 / π ) ) · π ) ) ) ) = ( abs ‘ ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) ) |
| 114 |
94 113
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) ) |
| 115 |
|
modval |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( 𝐴 mod π ) = ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) |
| 116 |
115
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( sin ‘ ( 𝐴 mod π ) ) = ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) |
| 117 |
116
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = ( abs ‘ ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) ) |
| 118 |
3 117
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = ( abs ‘ ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) ) |
| 119 |
74 118
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = ( abs ‘ ( sin ‘ ( 𝐴 − ( π · ( ⌊ ‘ ( 𝐴 / π ) ) ) ) ) ) ) |
| 120 |
114 119
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) ) |
| 121 |
27
|
fveq2d |
⊢ ( ( sin ‘ 𝐴 ) = 0 → ( abs ‘ ( sin ‘ 𝐴 ) ) = ( abs ‘ 0 ) ) |
| 122 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 123 |
121 122
|
eqtrdi |
⊢ ( ( sin ‘ 𝐴 ) = 0 → ( abs ‘ ( sin ‘ 𝐴 ) ) = 0 ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ 𝐴 ) ) = 0 ) |
| 125 |
120 124
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( abs ‘ ( sin ‘ ( 𝐴 mod π ) ) ) = 0 ) |
| 126 |
78 125
|
abs00d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( sin ‘ ( 𝐴 mod π ) ) = 0 ) |
| 127 |
|
notnotb |
⊢ ( ( sin ‘ ( 𝐴 mod π ) ) = 0 ↔ ¬ ¬ ( sin ‘ ( 𝐴 mod π ) ) = 0 ) |
| 128 |
127
|
bicomi |
⊢ ( ¬ ¬ ( sin ‘ ( 𝐴 mod π ) ) = 0 ↔ ( sin ‘ ( 𝐴 mod π ) ) = 0 ) |
| 129 |
|
ltne |
⊢ ( ( 0 ∈ ℝ ∧ 0 < ( sin ‘ ( 𝐴 mod π ) ) ) → ( sin ‘ ( 𝐴 mod π ) ) ≠ 0 ) |
| 130 |
129
|
neneqd |
⊢ ( ( 0 ∈ ℝ ∧ 0 < ( sin ‘ ( 𝐴 mod π ) ) ) → ¬ ( sin ‘ ( 𝐴 mod π ) ) = 0 ) |
| 131 |
130
|
expcom |
⊢ ( 0 < ( sin ‘ ( 𝐴 mod π ) ) → ( 0 ∈ ℝ → ¬ ( sin ‘ ( 𝐴 mod π ) ) = 0 ) ) |
| 132 |
80 131
|
mpi |
⊢ ( 0 < ( sin ‘ ( 𝐴 mod π ) ) → ¬ ( sin ‘ ( 𝐴 mod π ) ) = 0 ) |
| 133 |
132
|
con3i |
⊢ ( ¬ ¬ ( sin ‘ ( 𝐴 mod π ) ) = 0 → ¬ 0 < ( sin ‘ ( 𝐴 mod π ) ) ) |
| 134 |
128 133
|
sylbir |
⊢ ( ( sin ‘ ( 𝐴 mod π ) ) = 0 → ¬ 0 < ( sin ‘ ( 𝐴 mod π ) ) ) |
| 135 |
126 134
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ¬ 0 < ( sin ‘ ( 𝐴 mod π ) ) ) |
| 136 |
|
sinq12gt0 |
⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( 𝐴 mod π ) ) ) |
| 137 |
135 136
|
nsyl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ¬ ( 𝐴 mod π ) ∈ ( 0 (,) π ) ) |
| 138 |
80
|
rexri |
⊢ 0 ∈ ℝ* |
| 139 |
1
|
rexri |
⊢ π ∈ ℝ* |
| 140 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) ) |
| 141 |
138 139 140
|
mp2an |
⊢ ( ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) |
| 142 |
141
|
notbii |
⊢ ( ¬ ( 𝐴 mod π ) ∈ ( 0 (,) π ) ↔ ¬ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) |
| 143 |
137 142
|
sylib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ¬ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ) |
| 144 |
|
3anan12 |
⊢ ( ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ↔ ( 0 < ( 𝐴 mod π ) ∧ ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) ) |
| 145 |
144
|
notbii |
⊢ ( ¬ ( ( 𝐴 mod π ) ∈ ℝ ∧ 0 < ( 𝐴 mod π ) ∧ ( 𝐴 mod π ) < π ) ↔ ¬ ( 0 < ( 𝐴 mod π ) ∧ ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) ) |
| 146 |
143 145
|
sylib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ¬ ( 0 < ( 𝐴 mod π ) ∧ ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) ) |
| 147 |
|
modlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( 𝐴 mod π ) < π ) |
| 148 |
147
|
ancoms |
⊢ ( ( π ∈ ℝ+ ∧ 𝐴 ∈ ℝ ) → ( 𝐴 mod π ) < π ) |
| 149 |
3 74 148
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) < π ) |
| 150 |
76 149
|
jca |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) |
| 151 |
|
not12an2impnot1 |
⊢ ( ( ¬ ( 0 < ( 𝐴 mod π ) ∧ ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) ∧ ( ( 𝐴 mod π ) ∈ ℝ ∧ ( 𝐴 mod π ) < π ) ) → ¬ 0 < ( 𝐴 mod π ) ) |
| 152 |
146 150 151
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ¬ 0 < ( 𝐴 mod π ) ) |
| 153 |
|
modge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod π ) ) |
| 154 |
153
|
ancoms |
⊢ ( ( π ∈ ℝ+ ∧ 𝐴 ∈ ℝ ) → 0 ≤ ( 𝐴 mod π ) ) |
| 155 |
3 74 154
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 0 ≤ ( 𝐴 mod π ) ) |
| 156 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 mod π ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 mod π ) ↔ ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) ) |
| 157 |
156
|
biimp3a |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 mod π ) ∈ ℝ ∧ 0 ≤ ( 𝐴 mod π ) ) → ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) |
| 158 |
157
|
idiALT |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 mod π ) ∈ ℝ ∧ 0 ≤ ( 𝐴 mod π ) ) → ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) |
| 159 |
80 76 155 158
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) |
| 160 |
|
pm2.53 |
⊢ ( ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) → ( ¬ 0 < ( 𝐴 mod π ) → 0 = ( 𝐴 mod π ) ) ) |
| 161 |
160
|
imp |
⊢ ( ( ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ∧ ¬ 0 < ( 𝐴 mod π ) ) → 0 = ( 𝐴 mod π ) ) |
| 162 |
161
|
ancoms |
⊢ ( ( ¬ 0 < ( 𝐴 mod π ) ∧ ( 0 < ( 𝐴 mod π ) ∨ 0 = ( 𝐴 mod π ) ) ) → 0 = ( 𝐴 mod π ) ) |
| 163 |
152 159 162
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → 0 = ( 𝐴 mod π ) ) |
| 164 |
163
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 mod π ) = 0 ) |
| 165 |
|
mod0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ) → ( ( 𝐴 mod π ) = 0 ↔ ( 𝐴 / π ) ∈ ℤ ) ) |
| 166 |
165
|
biimp3a |
⊢ ( ( 𝐴 ∈ ℝ ∧ π ∈ ℝ+ ∧ ( 𝐴 mod π ) = 0 ) → ( 𝐴 / π ) ∈ ℤ ) |
| 167 |
166
|
3com12 |
⊢ ( ( π ∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ ( 𝐴 mod π ) = 0 ) → ( 𝐴 / π ) ∈ ℤ ) |
| 168 |
3 74 164 167
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( sin ‘ 𝐴 ) = 0 ) → ( 𝐴 / π ) ∈ ℤ ) |
| 169 |
168
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 → ( 𝐴 / π ) ∈ ℤ ) ) |
| 170 |
97
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ∈ ℂ ) |
| 171 |
85
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ≠ 0 ) |
| 172 |
11 170 171
|
divcan1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / π ) · π ) = 𝐴 ) |
| 173 |
172
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / π ) · π ) ) = ( sin ‘ 𝐴 ) ) |
| 174 |
|
id |
⊢ ( ( 𝐴 / π ) ∈ ℤ → ( 𝐴 / π ) ∈ ℤ ) |
| 175 |
|
sinkpi |
⊢ ( ( 𝐴 / π ) ∈ ℤ → ( sin ‘ ( ( 𝐴 / π ) · π ) ) = 0 ) |
| 176 |
174 175
|
syl |
⊢ ( ( 𝐴 / π ) ∈ ℤ → ( sin ‘ ( ( 𝐴 / π ) · π ) ) = 0 ) |
| 177 |
173 176
|
sylan9req |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 / π ) ∈ ℤ ) → ( sin ‘ 𝐴 ) = 0 ) |
| 178 |
177
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / π ) ∈ ℤ → ( sin ‘ 𝐴 ) = 0 ) ) |
| 179 |
169 178
|
impbid |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ 𝐴 ) = 0 ↔ ( 𝐴 / π ) ∈ ℤ ) ) |