Metamath Proof Explorer


Theorem 4an4132

Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018)

Ref Expression
Hypothesis 4an4132.1 ( ( ( ( 𝜃𝜒 ) ∧ 𝜓 ) ∧ 𝜑 ) → 𝜏 )
Assertion 4an4132 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 4an4132.1 ( ( ( ( 𝜃𝜒 ) ∧ 𝜓 ) ∧ 𝜑 ) → 𝜏 )
2 simpr ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜃 )
3 simplr ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜒 )
4 2 3 jca ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → ( 𝜃𝜒 ) )
5 simpllr ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜓 )
6 simplll ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜑 )
7 4 5 6 1 syl21anc ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )