Metamath Proof Explorer


Theorem 4an4132

Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018)

Ref Expression
Hypothesis 4an4132.1
|- ( ( ( ( th /\ ch ) /\ ps ) /\ ph ) -> ta )
Assertion 4an4132
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 4an4132.1
 |-  ( ( ( ( th /\ ch ) /\ ps ) /\ ph ) -> ta )
2 simpr
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> th )
3 simplr
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ch )
4 2 3 jca
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ( th /\ ch ) )
5 simpllr
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ps )
6 simplll
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ph )
7 4 5 6 1 syl21anc
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )