Description: Biconditional form of expcomd . (Contributed by Alan Sare, 22-Jul-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | expcomdg | |- ( ( ph -> ( ( ps /\ ch ) -> th ) ) <-> ( ph -> ( ch -> ( ps -> th ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomst | |- ( ( ( ps /\ ch ) -> th ) <-> ( ( ch /\ ps ) -> th ) ) |
|
2 | impexp | |- ( ( ( ch /\ ps ) -> th ) <-> ( ch -> ( ps -> th ) ) ) |
|
3 | 1 2 | bitri | |- ( ( ( ps /\ ch ) -> th ) <-> ( ch -> ( ps -> th ) ) ) |
4 | 3 | imbi2i | |- ( ( ph -> ( ( ps /\ ch ) -> th ) ) <-> ( ph -> ( ch -> ( ps -> th ) ) ) ) |