Metamath Proof Explorer


Theorem 4an31

Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018)

Ref Expression
Hypothesis 4an31.1 ( ( ( ( 𝜒𝜓 ) ∧ 𝜑 ) ∧ 𝜃 ) → 𝜏 )
Assertion 4an31 ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 4an31.1 ( ( ( ( 𝜒𝜓 ) ∧ 𝜑 ) ∧ 𝜃 ) → 𝜏 )
2 an31 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜒𝜓 ) ∧ 𝜑 ) )
3 2 1 sylanb ( ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 )