| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 2 |
|
halfcl |
|- ( K e. CC -> ( K / 2 ) e. CC ) |
| 3 |
|
2cn |
|- 2 e. CC |
| 4 |
|
picn |
|- _pi e. CC |
| 5 |
|
mulass |
|- ( ( ( K / 2 ) e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
| 6 |
3 4 5
|
mp3an23 |
|- ( ( K / 2 ) e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
| 7 |
2 6
|
syl |
|- ( K e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
| 8 |
|
2ne0 |
|- 2 =/= 0 |
| 9 |
|
divcan1 |
|- ( ( K e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( K / 2 ) x. 2 ) = K ) |
| 10 |
3 8 9
|
mp3an23 |
|- ( K e. CC -> ( ( K / 2 ) x. 2 ) = K ) |
| 11 |
10
|
oveq1d |
|- ( K e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( K x. _pi ) ) |
| 12 |
7 11
|
eqtr3d |
|- ( K e. CC -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
| 13 |
1 12
|
syl |
|- ( K e. ZZ -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
| 14 |
13
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
| 15 |
14
|
oveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( K x. _pi ) ) ) |
| 16 |
15
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A + ( K x. _pi ) ) ) ) |
| 17 |
16
|
eqcomd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 18 |
17
|
adantr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 19 |
|
sinper |
|- ( ( A e. CC /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` A ) ) |
| 20 |
19
|
adantlr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` A ) ) |
| 21 |
18 20
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` A ) ) |
| 22 |
21
|
fveq2d |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
| 23 |
|
peano2cn |
|- ( K e. CC -> ( K + 1 ) e. CC ) |
| 24 |
|
halfcl |
|- ( ( K + 1 ) e. CC -> ( ( K + 1 ) / 2 ) e. CC ) |
| 25 |
23 24
|
syl |
|- ( K e. CC -> ( ( K + 1 ) / 2 ) e. CC ) |
| 26 |
3 4
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 27 |
|
mulcl |
|- ( ( ( ( K + 1 ) / 2 ) e. CC /\ ( 2 x. _pi ) e. CC ) -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) |
| 28 |
25 26 27
|
sylancl |
|- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) |
| 29 |
|
subadd23 |
|- ( ( A e. CC /\ _pi e. CC /\ ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
| 30 |
4 29
|
mp3an2 |
|- ( ( A e. CC /\ ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
| 31 |
28 30
|
sylan2 |
|- ( ( A e. CC /\ K e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
| 32 |
|
divcan1 |
|- ( ( ( K + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
| 33 |
3 8 32
|
mp3an23 |
|- ( ( K + 1 ) e. CC -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
| 34 |
23 33
|
syl |
|- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
| 35 |
34
|
oveq1d |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( K + 1 ) x. _pi ) ) |
| 36 |
|
ax-1cn |
|- 1 e. CC |
| 37 |
|
adddir |
|- ( ( K e. CC /\ 1 e. CC /\ _pi e. CC ) -> ( ( K + 1 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
| 38 |
36 4 37
|
mp3an23 |
|- ( K e. CC -> ( ( K + 1 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
| 39 |
35 38
|
eqtrd |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
| 40 |
4
|
mullidi |
|- ( 1 x. _pi ) = _pi |
| 41 |
40
|
oveq2i |
|- ( ( K x. _pi ) + ( 1 x. _pi ) ) = ( ( K x. _pi ) + _pi ) |
| 42 |
39 41
|
eqtr2di |
|- ( K e. CC -> ( ( K x. _pi ) + _pi ) = ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) ) |
| 43 |
|
mulass |
|- ( ( ( ( K + 1 ) / 2 ) e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
| 44 |
3 4 43
|
mp3an23 |
|- ( ( ( K + 1 ) / 2 ) e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
| 45 |
25 44
|
syl |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
| 46 |
42 45
|
eqtr2d |
|- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) = ( ( K x. _pi ) + _pi ) ) |
| 47 |
46
|
oveq1d |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( ( ( K x. _pi ) + _pi ) - _pi ) ) |
| 48 |
|
mulcl |
|- ( ( K e. CC /\ _pi e. CC ) -> ( K x. _pi ) e. CC ) |
| 49 |
4 48
|
mpan2 |
|- ( K e. CC -> ( K x. _pi ) e. CC ) |
| 50 |
|
pncan |
|- ( ( ( K x. _pi ) e. CC /\ _pi e. CC ) -> ( ( ( K x. _pi ) + _pi ) - _pi ) = ( K x. _pi ) ) |
| 51 |
49 4 50
|
sylancl |
|- ( K e. CC -> ( ( ( K x. _pi ) + _pi ) - _pi ) = ( K x. _pi ) ) |
| 52 |
47 51
|
eqtrd |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( K x. _pi ) ) |
| 53 |
52
|
adantl |
|- ( ( A e. CC /\ K e. CC ) -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( K x. _pi ) ) |
| 54 |
53
|
oveq2d |
|- ( ( A e. CC /\ K e. CC ) -> ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) = ( A + ( K x. _pi ) ) ) |
| 55 |
31 54
|
eqtr2d |
|- ( ( A e. CC /\ K e. CC ) -> ( A + ( K x. _pi ) ) = ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) |
| 56 |
1 55
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. _pi ) ) = ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 59 |
|
subcl |
|- ( ( A e. CC /\ _pi e. CC ) -> ( A - _pi ) e. CC ) |
| 60 |
4 59
|
mpan2 |
|- ( A e. CC -> ( A - _pi ) e. CC ) |
| 61 |
|
sinper |
|- ( ( ( A - _pi ) e. CC /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
| 62 |
60 61
|
sylan |
|- ( ( A e. CC /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
| 63 |
62
|
adantlr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
| 64 |
|
sinmpi |
|- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 65 |
64
|
ad2antrr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 66 |
63 65
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = -u ( sin ` A ) ) |
| 67 |
58 66
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = -u ( sin ` A ) ) |
| 68 |
67
|
fveq2d |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` -u ( sin ` A ) ) ) |
| 69 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
| 70 |
69
|
absnegd |
|- ( A e. CC -> ( abs ` -u ( sin ` A ) ) = ( abs ` ( sin ` A ) ) ) |
| 71 |
70
|
ad2antrr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` -u ( sin ` A ) ) = ( abs ` ( sin ` A ) ) ) |
| 72 |
68 71
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
| 73 |
|
zeo |
|- ( K e. ZZ -> ( ( K / 2 ) e. ZZ \/ ( ( K + 1 ) / 2 ) e. ZZ ) ) |
| 74 |
73
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( K / 2 ) e. ZZ \/ ( ( K + 1 ) / 2 ) e. ZZ ) ) |
| 75 |
22 72 74
|
mpjaodan |
|- ( ( A e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |