Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
2 |
|
halfcl |
|- ( K e. CC -> ( K / 2 ) e. CC ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
picn |
|- _pi e. CC |
5 |
|
mulass |
|- ( ( ( K / 2 ) e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
6 |
3 4 5
|
mp3an23 |
|- ( ( K / 2 ) e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
7 |
2 6
|
syl |
|- ( K e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
8 |
|
2ne0 |
|- 2 =/= 0 |
9 |
|
divcan1 |
|- ( ( K e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( K / 2 ) x. 2 ) = K ) |
10 |
3 8 9
|
mp3an23 |
|- ( K e. CC -> ( ( K / 2 ) x. 2 ) = K ) |
11 |
10
|
oveq1d |
|- ( K e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( K x. _pi ) ) |
12 |
7 11
|
eqtr3d |
|- ( K e. CC -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
13 |
1 12
|
syl |
|- ( K e. ZZ -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
14 |
13
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
15 |
14
|
oveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( K x. _pi ) ) ) |
16 |
15
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A + ( K x. _pi ) ) ) ) |
17 |
16
|
eqcomd |
|- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
18 |
17
|
adantr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
19 |
|
sinper |
|- ( ( A e. CC /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` A ) ) |
20 |
19
|
adantlr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` A ) ) |
21 |
18 20
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` A ) ) |
22 |
21
|
fveq2d |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
23 |
|
peano2cn |
|- ( K e. CC -> ( K + 1 ) e. CC ) |
24 |
|
halfcl |
|- ( ( K + 1 ) e. CC -> ( ( K + 1 ) / 2 ) e. CC ) |
25 |
23 24
|
syl |
|- ( K e. CC -> ( ( K + 1 ) / 2 ) e. CC ) |
26 |
3 4
|
mulcli |
|- ( 2 x. _pi ) e. CC |
27 |
|
mulcl |
|- ( ( ( ( K + 1 ) / 2 ) e. CC /\ ( 2 x. _pi ) e. CC ) -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) |
28 |
25 26 27
|
sylancl |
|- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) |
29 |
|
subadd23 |
|- ( ( A e. CC /\ _pi e. CC /\ ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
30 |
4 29
|
mp3an2 |
|- ( ( A e. CC /\ ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
31 |
28 30
|
sylan2 |
|- ( ( A e. CC /\ K e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
32 |
|
divcan1 |
|- ( ( ( K + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
33 |
3 8 32
|
mp3an23 |
|- ( ( K + 1 ) e. CC -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
34 |
23 33
|
syl |
|- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
35 |
34
|
oveq1d |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( K + 1 ) x. _pi ) ) |
36 |
|
ax-1cn |
|- 1 e. CC |
37 |
|
adddir |
|- ( ( K e. CC /\ 1 e. CC /\ _pi e. CC ) -> ( ( K + 1 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
38 |
36 4 37
|
mp3an23 |
|- ( K e. CC -> ( ( K + 1 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
39 |
35 38
|
eqtrd |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
40 |
4
|
mulid2i |
|- ( 1 x. _pi ) = _pi |
41 |
40
|
oveq2i |
|- ( ( K x. _pi ) + ( 1 x. _pi ) ) = ( ( K x. _pi ) + _pi ) |
42 |
39 41
|
eqtr2di |
|- ( K e. CC -> ( ( K x. _pi ) + _pi ) = ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) ) |
43 |
|
mulass |
|- ( ( ( ( K + 1 ) / 2 ) e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
44 |
3 4 43
|
mp3an23 |
|- ( ( ( K + 1 ) / 2 ) e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
45 |
25 44
|
syl |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
46 |
42 45
|
eqtr2d |
|- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) = ( ( K x. _pi ) + _pi ) ) |
47 |
46
|
oveq1d |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( ( ( K x. _pi ) + _pi ) - _pi ) ) |
48 |
|
mulcl |
|- ( ( K e. CC /\ _pi e. CC ) -> ( K x. _pi ) e. CC ) |
49 |
4 48
|
mpan2 |
|- ( K e. CC -> ( K x. _pi ) e. CC ) |
50 |
|
pncan |
|- ( ( ( K x. _pi ) e. CC /\ _pi e. CC ) -> ( ( ( K x. _pi ) + _pi ) - _pi ) = ( K x. _pi ) ) |
51 |
49 4 50
|
sylancl |
|- ( K e. CC -> ( ( ( K x. _pi ) + _pi ) - _pi ) = ( K x. _pi ) ) |
52 |
47 51
|
eqtrd |
|- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( K x. _pi ) ) |
53 |
52
|
adantl |
|- ( ( A e. CC /\ K e. CC ) -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( K x. _pi ) ) |
54 |
53
|
oveq2d |
|- ( ( A e. CC /\ K e. CC ) -> ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) = ( A + ( K x. _pi ) ) ) |
55 |
31 54
|
eqtr2d |
|- ( ( A e. CC /\ K e. CC ) -> ( A + ( K x. _pi ) ) = ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) |
56 |
1 55
|
sylan2 |
|- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. _pi ) ) = ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) |
57 |
56
|
fveq2d |
|- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
58 |
57
|
adantr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
59 |
|
subcl |
|- ( ( A e. CC /\ _pi e. CC ) -> ( A - _pi ) e. CC ) |
60 |
4 59
|
mpan2 |
|- ( A e. CC -> ( A - _pi ) e. CC ) |
61 |
|
sinper |
|- ( ( ( A - _pi ) e. CC /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
62 |
60 61
|
sylan |
|- ( ( A e. CC /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
63 |
62
|
adantlr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
64 |
|
sinmpi |
|- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
65 |
64
|
ad2antrr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
66 |
63 65
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = -u ( sin ` A ) ) |
67 |
58 66
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = -u ( sin ` A ) ) |
68 |
67
|
fveq2d |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` -u ( sin ` A ) ) ) |
69 |
|
sincl |
|- ( A e. CC -> ( sin ` A ) e. CC ) |
70 |
69
|
absnegd |
|- ( A e. CC -> ( abs ` -u ( sin ` A ) ) = ( abs ` ( sin ` A ) ) ) |
71 |
70
|
ad2antrr |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` -u ( sin ` A ) ) = ( abs ` ( sin ` A ) ) ) |
72 |
68 71
|
eqtrd |
|- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
73 |
|
zeo |
|- ( K e. ZZ -> ( ( K / 2 ) e. ZZ \/ ( ( K + 1 ) / 2 ) e. ZZ ) ) |
74 |
73
|
adantl |
|- ( ( A e. CC /\ K e. ZZ ) -> ( ( K / 2 ) e. ZZ \/ ( ( K + 1 ) / 2 ) e. ZZ ) ) |
75 |
22 72 74
|
mpjaodan |
|- ( ( A e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |