| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
| 2 |
|
oveq1 |
|- ( N = 0 -> ( N / 2 ) = ( 0 / 2 ) ) |
| 3 |
|
2cn |
|- 2 e. CC |
| 4 |
|
2ne0 |
|- 2 =/= 0 |
| 5 |
3 4
|
div0i |
|- ( 0 / 2 ) = 0 |
| 6 |
|
0z |
|- 0 e. ZZ |
| 7 |
5 6
|
eqeltri |
|- ( 0 / 2 ) e. ZZ |
| 8 |
2 7
|
eqeltrdi |
|- ( N = 0 -> ( N / 2 ) e. ZZ ) |
| 9 |
8
|
pm2.24d |
|- ( N = 0 -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 10 |
9
|
adantl |
|- ( ( N e. RR /\ N = 0 ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 11 |
|
nnz |
|- ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) |
| 12 |
11
|
con3i |
|- ( -. ( N / 2 ) e. ZZ -> -. ( N / 2 ) e. NN ) |
| 13 |
|
nneo |
|- ( N e. NN -> ( ( N / 2 ) e. NN <-> -. ( ( N + 1 ) / 2 ) e. NN ) ) |
| 14 |
13
|
biimprd |
|- ( N e. NN -> ( -. ( ( N + 1 ) / 2 ) e. NN -> ( N / 2 ) e. NN ) ) |
| 15 |
14
|
con1d |
|- ( N e. NN -> ( -. ( N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN ) ) |
| 16 |
|
nnz |
|- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) |
| 17 |
12 15 16
|
syl56 |
|- ( N e. NN -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 18 |
17
|
adantl |
|- ( ( N e. RR /\ N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 19 |
|
recn |
|- ( N e. RR -> N e. CC ) |
| 20 |
|
divneg |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( N / 2 ) = ( -u N / 2 ) ) |
| 21 |
3 4 20
|
mp3an23 |
|- ( N e. CC -> -u ( N / 2 ) = ( -u N / 2 ) ) |
| 22 |
19 21
|
syl |
|- ( N e. RR -> -u ( N / 2 ) = ( -u N / 2 ) ) |
| 23 |
22
|
eleq1d |
|- ( N e. RR -> ( -u ( N / 2 ) e. NN <-> ( -u N / 2 ) e. NN ) ) |
| 24 |
|
nnnegz |
|- ( -u ( N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) |
| 25 |
23 24
|
biimtrrdi |
|- ( N e. RR -> ( ( -u N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) ) |
| 26 |
19
|
halfcld |
|- ( N e. RR -> ( N / 2 ) e. CC ) |
| 27 |
26
|
negnegd |
|- ( N e. RR -> -u -u ( N / 2 ) = ( N / 2 ) ) |
| 28 |
27
|
eleq1d |
|- ( N e. RR -> ( -u -u ( N / 2 ) e. ZZ <-> ( N / 2 ) e. ZZ ) ) |
| 29 |
25 28
|
sylibd |
|- ( N e. RR -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) |
| 30 |
29
|
adantr |
|- ( ( N e. RR /\ -u N e. NN ) -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) |
| 31 |
30
|
con3d |
|- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> -. ( -u N / 2 ) e. NN ) ) |
| 32 |
|
nneo |
|- ( -u N e. NN -> ( ( -u N / 2 ) e. NN <-> -. ( ( -u N + 1 ) / 2 ) e. NN ) ) |
| 33 |
32
|
biimprd |
|- ( -u N e. NN -> ( -. ( ( -u N + 1 ) / 2 ) e. NN -> ( -u N / 2 ) e. NN ) ) |
| 34 |
33
|
con1d |
|- ( -u N e. NN -> ( -. ( -u N / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. NN ) ) |
| 35 |
|
nnz |
|- ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. ZZ ) |
| 36 |
|
peano2zm |
|- ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 37 |
|
ax-1cn |
|- 1 e. CC |
| 38 |
37 3
|
negsubdi2i |
|- -u ( 1 - 2 ) = ( 2 - 1 ) |
| 39 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 40 |
38 39
|
eqtr2i |
|- 1 = -u ( 1 - 2 ) |
| 41 |
37 3
|
subcli |
|- ( 1 - 2 ) e. CC |
| 42 |
37 41
|
negcon2i |
|- ( 1 = -u ( 1 - 2 ) <-> ( 1 - 2 ) = -u 1 ) |
| 43 |
40 42
|
mpbi |
|- ( 1 - 2 ) = -u 1 |
| 44 |
43
|
oveq2i |
|- ( -u N + ( 1 - 2 ) ) = ( -u N + -u 1 ) |
| 45 |
|
negcl |
|- ( N e. CC -> -u N e. CC ) |
| 46 |
|
addsubass |
|- ( ( -u N e. CC /\ 1 e. CC /\ 2 e. CC ) -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
| 47 |
37 3 46
|
mp3an23 |
|- ( -u N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
| 48 |
45 47
|
syl |
|- ( N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
| 49 |
|
negdi |
|- ( ( N e. CC /\ 1 e. CC ) -> -u ( N + 1 ) = ( -u N + -u 1 ) ) |
| 50 |
37 49
|
mpan2 |
|- ( N e. CC -> -u ( N + 1 ) = ( -u N + -u 1 ) ) |
| 51 |
44 48 50
|
3eqtr4a |
|- ( N e. CC -> ( ( -u N + 1 ) - 2 ) = -u ( N + 1 ) ) |
| 52 |
51
|
oveq1d |
|- ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 53 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
| 54 |
53
|
eqcomi |
|- 1 = ( 2 / 2 ) |
| 55 |
54
|
oveq2i |
|- ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) |
| 56 |
|
peano2cn |
|- ( -u N e. CC -> ( -u N + 1 ) e. CC ) |
| 57 |
45 56
|
syl |
|- ( N e. CC -> ( -u N + 1 ) e. CC ) |
| 58 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 59 |
|
divsubdir |
|- ( ( ( -u N + 1 ) e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 60 |
3 58 59
|
mp3an23 |
|- ( ( -u N + 1 ) e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 61 |
57 60
|
syl |
|- ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
| 62 |
55 61
|
eqtr4id |
|- ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) - 2 ) / 2 ) ) |
| 63 |
|
peano2cn |
|- ( N e. CC -> ( N + 1 ) e. CC ) |
| 64 |
|
divneg |
|- ( ( ( N + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 65 |
3 4 64
|
mp3an23 |
|- ( ( N + 1 ) e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 66 |
63 65
|
syl |
|- ( N e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
| 67 |
52 62 66
|
3eqtr4d |
|- ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) |
| 68 |
19 67
|
syl |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) |
| 69 |
68
|
eleq1d |
|- ( N e. RR -> ( ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ <-> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 70 |
36 69
|
imbitrid |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 71 |
|
znegcl |
|- ( -u ( ( N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) |
| 72 |
70 71
|
syl6 |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 73 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
| 74 |
73
|
recnd |
|- ( N e. RR -> ( N + 1 ) e. CC ) |
| 75 |
74
|
halfcld |
|- ( N e. RR -> ( ( N + 1 ) / 2 ) e. CC ) |
| 76 |
75
|
negnegd |
|- ( N e. RR -> -u -u ( ( N + 1 ) / 2 ) = ( ( N + 1 ) / 2 ) ) |
| 77 |
76
|
eleq1d |
|- ( N e. RR -> ( -u -u ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 78 |
72 77
|
sylibd |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 79 |
35 78
|
syl5 |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 80 |
34 79
|
sylan9r |
|- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( -u N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 81 |
31 80
|
syld |
|- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 82 |
10 18 81
|
3jaodan |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 83 |
1 82
|
sylbi |
|- ( N e. ZZ -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 84 |
83
|
orrd |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |