Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
2 |
|
peano2cn |
|- ( N e. CC -> ( N + 1 ) e. CC ) |
3 |
1 2
|
syl |
|- ( N e. ZZ -> ( N + 1 ) e. CC ) |
4 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
5 |
|
2ne0 |
|- 2 =/= 0 |
6 |
5
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
7 |
3 4 6
|
divcan2d |
|- ( N e. ZZ -> ( 2 x. ( ( N + 1 ) / 2 ) ) = ( N + 1 ) ) |
8 |
1 4 6
|
divcan2d |
|- ( N e. ZZ -> ( 2 x. ( N / 2 ) ) = N ) |
9 |
8
|
oveq1d |
|- ( N e. ZZ -> ( ( 2 x. ( N / 2 ) ) + 1 ) = ( N + 1 ) ) |
10 |
7 9
|
eqtr4d |
|- ( N e. ZZ -> ( 2 x. ( ( N + 1 ) / 2 ) ) = ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
11 |
|
zneo |
|- ( ( ( ( N + 1 ) / 2 ) e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) |
12 |
11
|
expcom |
|- ( ( N / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ -> ( 2 x. ( ( N + 1 ) / 2 ) ) =/= ( ( 2 x. ( N / 2 ) ) + 1 ) ) ) |
13 |
12
|
necon2bd |
|- ( ( N / 2 ) e. ZZ -> ( ( 2 x. ( ( N + 1 ) / 2 ) ) = ( ( 2 x. ( N / 2 ) ) + 1 ) -> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
14 |
10 13
|
syl5com |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ -> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
15 |
|
zeo |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |
16 |
15
|
ord |
|- ( N e. ZZ -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
17 |
16
|
con1d |
|- ( N e. ZZ -> ( -. ( ( N + 1 ) / 2 ) e. ZZ -> ( N / 2 ) e. ZZ ) ) |
18 |
14 17
|
impbid |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |