| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
| 2 |
|
picn |
|- _pi e. CC |
| 3 |
|
mulcl |
|- ( ( K e. CC /\ _pi e. CC ) -> ( K x. _pi ) e. CC ) |
| 4 |
1 2 3
|
sylancl |
|- ( K e. ZZ -> ( K x. _pi ) e. CC ) |
| 5 |
4
|
addlidd |
|- ( K e. ZZ -> ( 0 + ( K x. _pi ) ) = ( K x. _pi ) ) |
| 6 |
5
|
fveq2d |
|- ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) = ( sin ` ( K x. _pi ) ) ) |
| 7 |
|
0cn |
|- 0 e. CC |
| 8 |
|
addcl |
|- ( ( 0 e. CC /\ ( K x. _pi ) e. CC ) -> ( 0 + ( K x. _pi ) ) e. CC ) |
| 9 |
7 4 8
|
sylancr |
|- ( K e. ZZ -> ( 0 + ( K x. _pi ) ) e. CC ) |
| 10 |
9
|
sincld |
|- ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) e. CC ) |
| 11 |
|
abssinper |
|- ( ( 0 e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` 0 ) ) ) |
| 12 |
7 11
|
mpan |
|- ( K e. ZZ -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` 0 ) ) ) |
| 13 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
| 14 |
13
|
fveq2i |
|- ( abs ` ( sin ` 0 ) ) = ( abs ` 0 ) |
| 15 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 16 |
14 15
|
eqtri |
|- ( abs ` ( sin ` 0 ) ) = 0 |
| 17 |
12 16
|
eqtrdi |
|- ( K e. ZZ -> ( abs ` ( sin ` ( 0 + ( K x. _pi ) ) ) ) = 0 ) |
| 18 |
10 17
|
abs00d |
|- ( K e. ZZ -> ( sin ` ( 0 + ( K x. _pi ) ) ) = 0 ) |
| 19 |
6 18
|
eqtr3d |
|- ( K e. ZZ -> ( sin ` ( K x. _pi ) ) = 0 ) |