Metamath Proof Explorer


Theorem iunconnALT

Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart https://us.metamath.org/other/completeusersproof/iunconaltvd.html . As it is verified by the Metamath program, iunconnALT verifies https://us.metamath.org/other/completeusersproof/iunconaltvd.html . (Contributed by Alan Sare, 22-Apr-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses iunconnALT.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
iunconnALT.2 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑋 )
iunconnALT.3 ( ( 𝜑𝑘𝐴 ) → 𝑃𝐵 )
iunconnALT.4 ( ( 𝜑𝑘𝐴 ) → ( 𝐽t 𝐵 ) ∈ Conn )
Assertion iunconnALT ( 𝜑 → ( 𝐽t 𝑘𝐴 𝐵 ) ∈ Conn )

Proof

Step Hyp Ref Expression
1 iunconnALT.1 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
2 iunconnALT.2 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑋 )
3 iunconnALT.3 ( ( 𝜑𝑘𝐴 ) → 𝑃𝐵 )
4 iunconnALT.4 ( ( 𝜑𝑘𝐴 ) → ( 𝐽t 𝐵 ) ∈ Conn )
5 biid ( ( ( ( ( ( ( 𝜑𝑢𝐽 ) ∧ 𝑣𝐽 ) ∧ ( 𝑢 𝑘𝐴 𝐵 ) ≠ ∅ ) ∧ ( 𝑣 𝑘𝐴 𝐵 ) ≠ ∅ ) ∧ ( 𝑢𝑣 ) ⊆ ( 𝑋 𝑘𝐴 𝐵 ) ) ∧ 𝑘𝐴 𝐵 ⊆ ( 𝑢𝑣 ) ) ↔ ( ( ( ( ( ( 𝜑𝑢𝐽 ) ∧ 𝑣𝐽 ) ∧ ( 𝑢 𝑘𝐴 𝐵 ) ≠ ∅ ) ∧ ( 𝑣 𝑘𝐴 𝐵 ) ≠ ∅ ) ∧ ( 𝑢𝑣 ) ⊆ ( 𝑋 𝑘𝐴 𝐵 ) ) ∧ 𝑘𝐴 𝐵 ⊆ ( 𝑢𝑣 ) ) )
6 5 1 2 3 4 iunconnlem2 ( 𝜑 → ( 𝐽t 𝑘𝐴 𝐵 ) ∈ Conn )