| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iundifdif.o |
|- O e. _V |
| 2 |
|
iundifdif.2 |
|- A C_ ~P O |
| 3 |
|
iundif2 |
|- U_ x e. A ( O \ x ) = ( O \ |^|_ x e. A x ) |
| 4 |
|
intiin |
|- |^| A = |^|_ x e. A x |
| 5 |
4
|
difeq2i |
|- ( O \ |^| A ) = ( O \ |^|_ x e. A x ) |
| 6 |
3 5
|
eqtr4i |
|- U_ x e. A ( O \ x ) = ( O \ |^| A ) |
| 7 |
6
|
difeq2i |
|- ( O \ U_ x e. A ( O \ x ) ) = ( O \ ( O \ |^| A ) ) |
| 8 |
2
|
jctl |
|- ( A =/= (/) -> ( A C_ ~P O /\ A =/= (/) ) ) |
| 9 |
|
intssuni2 |
|- ( ( A C_ ~P O /\ A =/= (/) ) -> |^| A C_ U. ~P O ) |
| 10 |
|
unipw |
|- U. ~P O = O |
| 11 |
10
|
sseq2i |
|- ( |^| A C_ U. ~P O <-> |^| A C_ O ) |
| 12 |
11
|
biimpi |
|- ( |^| A C_ U. ~P O -> |^| A C_ O ) |
| 13 |
8 9 12
|
3syl |
|- ( A =/= (/) -> |^| A C_ O ) |
| 14 |
|
dfss4 |
|- ( |^| A C_ O <-> ( O \ ( O \ |^| A ) ) = |^| A ) |
| 15 |
13 14
|
sylib |
|- ( A =/= (/) -> ( O \ ( O \ |^| A ) ) = |^| A ) |
| 16 |
7 15
|
eqtr2id |
|- ( A =/= (/) -> |^| A = ( O \ U_ x e. A ( O \ x ) ) ) |