Metamath Proof Explorer


Theorem iundifdif

Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd . (Contributed by Thierry Arnoux, 4-Sep-2016)

Ref Expression
Hypotheses iundifdif.o 𝑂 ∈ V
iundifdif.2 𝐴 ⊆ 𝒫 𝑂
Assertion iundifdif ( 𝐴 ≠ ∅ → 𝐴 = ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 iundifdif.o 𝑂 ∈ V
2 iundifdif.2 𝐴 ⊆ 𝒫 𝑂
3 iundif2 𝑥𝐴 ( 𝑂𝑥 ) = ( 𝑂 𝑥𝐴 𝑥 )
4 intiin 𝐴 = 𝑥𝐴 𝑥
5 4 difeq2i ( 𝑂 𝐴 ) = ( 𝑂 𝑥𝐴 𝑥 )
6 3 5 eqtr4i 𝑥𝐴 ( 𝑂𝑥 ) = ( 𝑂 𝐴 )
7 6 difeq2i ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) = ( 𝑂 ∖ ( 𝑂 𝐴 ) )
8 2 jctl ( 𝐴 ≠ ∅ → ( 𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅ ) )
9 intssuni2 ( ( 𝐴 ⊆ 𝒫 𝑂𝐴 ≠ ∅ ) → 𝐴 𝒫 𝑂 )
10 unipw 𝒫 𝑂 = 𝑂
11 10 sseq2i ( 𝐴 𝒫 𝑂 𝐴𝑂 )
12 11 biimpi ( 𝐴 𝒫 𝑂 𝐴𝑂 )
13 8 9 12 3syl ( 𝐴 ≠ ∅ → 𝐴𝑂 )
14 dfss4 ( 𝐴𝑂 ↔ ( 𝑂 ∖ ( 𝑂 𝐴 ) ) = 𝐴 )
15 13 14 sylib ( 𝐴 ≠ ∅ → ( 𝑂 ∖ ( 𝑂 𝐴 ) ) = 𝐴 )
16 7 15 syl5req ( 𝐴 ≠ ∅ → 𝐴 = ( 𝑂 𝑥𝐴 ( 𝑂𝑥 ) ) )