Description: Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixpeq2d.1 | |- F/ x ph |
|
| ixpeq2d.2 | |- ( ( ph /\ x e. A ) -> B = C ) |
||
| Assertion | ixpeq2d | |- ( ph -> X_ x e. A B = X_ x e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2d.1 | |- F/ x ph |
|
| 2 | ixpeq2d.2 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
| 3 | 2 | ex | |- ( ph -> ( x e. A -> B = C ) ) |
| 4 | 1 3 | ralrimi | |- ( ph -> A. x e. A B = C ) |
| 5 | ixpeq2 | |- ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C ) |
|
| 6 | 4 5 | syl | |- ( ph -> X_ x e. A B = X_ x e. A C ) |