Metamath Proof Explorer


Theorem ixpv

Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Assertion ixpv
|- X_ x e. A _V = { f | f Fn A }

Proof

Step Hyp Ref Expression
1 dffn2
 |-  ( g Fn A <-> g : A --> _V )
2 vex
 |-  g e. _V
3 fneq1
 |-  ( f = g -> ( f Fn A <-> g Fn A ) )
4 2 3 elab
 |-  ( g e. { f | f Fn A } <-> g Fn A )
5 2 elixpconst
 |-  ( g e. X_ x e. A _V <-> g : A --> _V )
6 1 4 5 3bitr4ri
 |-  ( g e. X_ x e. A _V <-> g e. { f | f Fn A } )
7 6 eqriv
 |-  X_ x e. A _V = { f | f Fn A }