Metamath Proof Explorer


Theorem ixpv

Description: Infinite Cartesian product of the universal class is the set of functions with a fixed domain. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Assertion ixpv X 𝑥𝐴 V = { 𝑓𝑓 Fn 𝐴 }

Proof

Step Hyp Ref Expression
1 dffn2 ( 𝑔 Fn 𝐴𝑔 : 𝐴 ⟶ V )
2 vex 𝑔 ∈ V
3 fneq1 ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝐴𝑔 Fn 𝐴 ) )
4 2 3 elab ( 𝑔 ∈ { 𝑓𝑓 Fn 𝐴 } ↔ 𝑔 Fn 𝐴 )
5 2 elixpconst ( 𝑔X 𝑥𝐴 V ↔ 𝑔 : 𝐴 ⟶ V )
6 1 4 5 3bitr4ri ( 𝑔X 𝑥𝐴 V ↔ 𝑔 ∈ { 𝑓𝑓 Fn 𝐴 } )
7 6 eqriv X 𝑥𝐴 V = { 𝑓𝑓 Fn 𝐴 }