Metamath Proof Explorer


Theorem jaodd

Description: Double deduction form of jaoi . (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Hypotheses jaodd.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
jaodd.2
|- ( ph -> ( ps -> ( ta -> th ) ) )
Assertion jaodd
|- ( ph -> ( ps -> ( ( ch \/ ta ) -> th ) ) )

Proof

Step Hyp Ref Expression
1 jaodd.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 jaodd.2
 |-  ( ph -> ( ps -> ( ta -> th ) ) )
3 jao
 |-  ( ( ch -> th ) -> ( ( ta -> th ) -> ( ( ch \/ ta ) -> th ) ) )
4 1 2 3 syl6c
 |-  ( ph -> ( ps -> ( ( ch \/ ta ) -> th ) ) )