Metamath Proof Explorer


Theorem jaodd

Description: Double deduction form of jaoi . (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Hypotheses jaodd.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
jaodd.2 ( 𝜑 → ( 𝜓 → ( 𝜏𝜃 ) ) )
Assertion jaodd ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜏 ) → 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 jaodd.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 jaodd.2 ( 𝜑 → ( 𝜓 → ( 𝜏𝜃 ) ) )
3 jao ( ( 𝜒𝜃 ) → ( ( 𝜏𝜃 ) → ( ( 𝜒𝜏 ) → 𝜃 ) ) )
4 1 2 3 syl6c ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜏 ) → 𝜃 ) ) )